Advertisement

User-Friendly Interface for Introducing Fuzzy Criteria into Expressive Searches

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1037)

Abstract

We present a framework that allows any user (without the need of neither technical no theoretical knowledge) to define fuzzy criteria based on the non-fuzzy information stored in databases in an easy way. The interests for developing such a framework is to provide a human-oriented (fuzzy and non-fuzzy) search engine with a user-friendly interface to perform expressive and flexible searches over databases. We achieved this task by providing an intelligent interface for the users to define fuzzy criteria without having any knowledge about its low-level syntax or implementation details. Our framework allows users to pose different queries (combining crisp and fuzzy search criteria) over various conventional and modern data formats such as JSON, SQL, Prolog, CSV, XLS and XLSX. We believe our approach adds to the advancement for more intelligent and human-oriented fuzzy search engines.

Keywords

Fuzzy logic Fuzzy criteria Search engine Framework 

References

  1. 1.
    Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988).  https://doi.org/10.1109/2.53CrossRefGoogle Scholar
  2. 2.
    Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)CrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, Norwell, MA, USA, pp. 45–60 (1997)Google Scholar
  4. 4.
    Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: IJCAI 1985: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 701–703. Morgan Kaufmann Publishers Inc., San Francisco (1985)CrossRefGoogle Scholar
  6. 6.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril - Fuzzy and Evidential Reasoning in Artificial Intelligence. Wiley, New York (1995)Google Scholar
  7. 7.
    Li, D., Liu, D.: A Fuzzy Prolog Database System. Wiley, New York (1990)Google Scholar
  8. 8.
    Morcillo, P.J., Moreno, G.: FLOPER, a fuzzy logic programming environment for research. In: de Oviedo, F.U. (ed.) Proceedings of VIII Jornadas sobre Programacion y Lenguajes (PROLE 2008), Gijón, Spain, pp. 259–263, October 2008Google Scholar
  9. 9.
    Vaucheret, C., Guadarrama, S., Muñoz-Hernández, S.: Fuzzy prolog: a simple general implementation using CLP(R). In: Baaz M., Voronkov A. (eds.) LPAR. Lecture Notes in Artificial Intelligence, vol. 2514, pp. 450–464. Springer (2002)Google Scholar
  10. 10.
    Guardarrama, S., Muñoz-Hernández, S., Vaucheret, C.: Fuzzy Prolog: a new approach using soft constraints propagation. Fuzzy Sets Syst. 144(1), 127–150 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Muñoz-Hernández, S., Pablos-Ceruelo, V., Strass, H.: RFuzzy: syntax, semantics and implementation details of a simple and expressive fuzzy tool over prolog. Inf. Sci. 181(10), 1951–1970 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  13. 13.
    Pablos-Ceruelo, V., Muñoz-Hernández, S.: Getting answers to fuzzy and flexible searches by easy modeling of real-world knowledge. In: IJCCI 2013 – Proceedings of the 5th International Joint Conference on Computational Intelligence (2013)Google Scholar
  14. 14.
    Pablos-Ceruelo, V., Muñoz-Hernández, S.: FleSe: a tool for posing flexible and expressive (fuzzy) queries to a regular database. In: Proceedings of the 11th International Conference on Distributed Computing and Artificial Intelligence, pp. 157–164 (2014)Google Scholar
  15. 15.
    The CLIP Lab: The Ciao Prolog Development System WWW Site. http://www.clip.dia.fi.upm.es/Software/Ciao/
  16. 16.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic programming. In: Proceedings of Progress in Artificial Intelligence, pp. 290–297 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros InformáticosMadridSpain

Personalised recommendations