Skip to main content

A Proof of Turing Completeness in Bitcoin Script

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1037)

Abstract

The concept of a Turing machine has been well defined. It would be sufficient to show that Bitcoin uses a dual-stack architecture that acts as a dual counter machine. Such systems have already been demonstrated as being Turing complete. We demonstrate that Bitcoin script is a minimal family of which \( \lambda \lambda \) and R are members. Further, using the compositional product rule and the iteration rule, we demonstrate that Bitcoin scripting is Turing complete with the limitations imposed on any real-world computer. The limitation is that there cannot be an infinite tape. Iterations can be simulated using an “unrolled” loop function with allocation to the “Alt” stack. As the product rule says, if A, B are machines, then A.B is also a machine. The iteration rule shows that if A is a machine, then (A) is also a machine. Further, the minimum power of A under which the observed square of the final configuration is blank. The consequence of such rules is that for every partial recursive function of in variables we can show that it can be evaluated by a machine of the proposed family.

Keywords

  • Bitcoin
  • Quantum computing
  • Encryption

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-29516-5_23
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-29516-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)

Notes

  1. 1.

    Marvin Minsky, Computation: Finite and Infinite Machines, Prentice–Hall, Inc., N.J., 1967. See Chapter 8, Section 8.2 “Unsolvability of the Halting Problem.”

  2. 2.

    Here \( \Omega \) is equivalent to \( \Omega ^{{\prime }} -\Omega _{R} \).

  3. 3.

    See https://en.Bitcoin.it/wiki/Script and http://davidederosa.com/basic-blockchain-programming/Bitcoin-script-language-part-one/.

  4. 4.

    See http://fortranwiki.org/fortran/show/HomePage and https://gcc.gnu.org/fortran/.

References

  1. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and push-down automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 111–174. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  2. Bailey, C.: Inter-boundary scheduling of stack operands: a preliminary study. In: Proceedings of Euroforth Conference, pp. 3–11 (2000)

    Google Scholar 

  3. Bohm, C., Jacopini, G.: Nuove tecniche di programmazione semplificanti la sintesi di machine universali di Turing. Rend. Acc. Naz. Lincei, serie VIII, vol. 32 fasc. 6, p. 913-022 (1962)

    Google Scholar 

  4. Davis, M.: Computability and Unsolvability. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  5. Ginsburg, S., Greibach, S., Harrison, M.: Stack automata and compiling. JACM 14(1), 172–201 (1967)

    CrossRef  MathSciNet  Google Scholar 

  6. Ginsburg, S., Greibach, S., Harrison, M.: One-way stack automata. JACM 14(2), 389–418 (1967)

    CrossRef  MathSciNet  Google Scholar 

  7. Hermes, H.: Aufzahlbarkeit, Entscheidbarket, Berechenbarkeit. Springer, Berlin (1961)

    CrossRef  Google Scholar 

  8. Hopcroft, J., Ullman, J.: Nonerasing stack automata. J. Comput. Syst. Sci. 1(2), 166–186 (1967)

    CrossRef  Google Scholar 

  9. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison Wesley, Boston (2006)

    MATH  Google Scholar 

  10. Ianov, Yu.I.: On the equivalence and transformation of program schemes. Doklady Akad. Nauk S.S.S.R. 113, 39–42 (1957). [in Russian]

    Google Scholar 

  11. Koopman, P.: A preliminary exploration of optimized stack code generation. J. Forth Appl. Res. 6(3), 241–251 (1994)

    Google Scholar 

  12. Lee, C.Y.: Automata and finite automata. Bell Syst. Tech. J. 39, 1267–1295 (1960)

    CrossRef  MathSciNet  Google Scholar 

  13. Robinson, J.: General recursive functions. Proc. Amer. Math. Soc. 1, 703–718 (1950)

    CrossRef  MathSciNet  Google Scholar 

  14. Shannon, M., Bailey C.: Global stack allocation: register allocation for stack machines. In: Proceedings of Euroforth Conference. Complang – TU Wien, Cambridge (2006)

    Google Scholar 

  15. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. Ass. Comp. Mach. 10, 217–255 (1963)

    CrossRef  MathSciNet  Google Scholar 

  16. Sipser, M.: Introduction to the Theory of Computation, preliminary edn., section 2.2: Pushdown Automata, pp. 101–114. PWS Publishing Co., Boston (1997)

    Google Scholar 

  17. Smullyan, R.M.: Theory of Formal Systems. Annals of Mathematics Studies, vol. 47. Princeton University Press, Princeton (1961)

    Google Scholar 

  18. Turing, A.M.: On computable numbers with an application to the Entscheidungs-problem. Proc. Lond. Math. Soc. {2}, 42 (1936-7), pp. 230-265: addendum and corrigendum, 43, pp. 544-556 (1937)

    Google Scholar 

  19. Wang, H.: A variant to Turing’s theory of computing machines. J. ACM 4, 63–92 (1957)

    CrossRef  MathSciNet  Google Scholar 

  20. Cockshott, W.P., Michaelson, G.J.: Tangled Tapes: Infinity, Interaction and Turing Machines (2012). https://www.semanticscholar.org/paper/Tangled-Tapes-Infinity-Interaction-and-Turing-Mach-Cockshott-Michaelson/19a6bcb7edccff58b6a2d5ba6a451b9ad4956312. Accessed 13 Mar 2019

The following websites provide background information

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Wright, C.S. (2020). A Proof of Turing Completeness in Bitcoin Script. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_23

Download citation