Skip to main content

Using Local Binary Patterns and Convolutional Neural Networks for Melanoma Detection

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1038))

Included in the following conference series:

  • 2332 Accesses

Abstract

Skin cancer is an abnormal growth of skin cells on body parts which get more exposure to sunlight. Detection of cancer in early stages improves patient outcomes, however, manual assessment of medical cells and microscopy images is laborious work, and the results are often subjective so that the agreement between viewers can be low. In this paper, a new method is proposed to detect skin cancer signs such as asymmetry, border, colour and diameter using segmentation and region analysis. Melanoma and non-melanoma skin cancer images have been classified using region analysis, boundary, colour and size measurements. To achieve accurate and computationally efficient results, Local Binary Pattern Convolutional Neural Networks are employed. The proposed method has provided a high classification performance, achieving 0.95 accuracy rate, 0.95 sensitivity, and 0.96 specificity on the ISIC public data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation: Cancer today (2018). http://gco.iarc.fr/today

  2. Singh, A., Rani, P., Maurya, R.: Melanoma detection using local classes of histogram of equivalence pattern. Int. J. Comput. Sci. Inf. Secur. 14(5), 415 (2016)

    Google Scholar 

  3. Lau, H.T., Al-Jumaily, A.: Automatically early detection of skin cancer: study based on nueral netwok classification. In: International Conference of the Soft Computing and Pattern Recognition, 2009, SOCPAR 2009, pp. 375–380. IEEE (2009)

    Google Scholar 

  4. Akter, M., Jakaite, L.: Extraction of texture features from x-ray images: case of osteoarthritis detection. In: Yang, X.S., Sherratt, S., Dey, N., Joshi, A. (eds.) Third International Congress on Information and Communication Technology, pp. 143–150. Springer, Singapore (2019)

    Google Scholar 

  5. Tevini, M., et al.: UV-B radiation and ozone depletion: effects on humans, animals, microorganisms and materials. Lewis Publishers, Boca Raton (1993)

    Google Scholar 

  6. American Academy of Dermatology: Skin cancer (2018). https://www.aad.org/media/stats/conditions/skin-cancer

  7. DiOrazio, J.A., Marsch, A., Lagrew, J., Veith, W.B.: Skin pigmentation and melanoma risk. In: Advances in Malignant Melanoma-Clinical and Research Perspectives, InTech (2011)

    Google Scholar 

  8. Institute, N.C.: Cancer stat facts: Melanoma of the skin (1999). https://seer.cancer.gov/statfacts/html/melan.html

  9. La Porta, C., et al.: Skin cancers: risk factors, prevention and therapy, Intech (2011)

    Google Scholar 

  10. McCourt, C., Dolan, O., Gormley, G.: Malignant melanoma: a pictorial review. Ulster Med. J. 83(2), 103 (2014)

    Google Scholar 

  11. National Health Service: Symptoms - skin cancer (melanoma) (2017). https://www.nhs.uk/conditions/melanoma-skin-cancer/symptoms/

  12. Round, A.J., Duller, A.W., Fish, P.J.: Lesion classification using skin patterning. Skin Res. Technol. 6(4), 183–192 (2000)

    Article  Google Scholar 

  13. She, Z., Excell, P.S.: Skin pattern analysis for lesion classification using local isotropy. Skin Res. Technol. 17(2), 206–212 (2011)

    Article  Google Scholar 

  14. Uglov, J., Jakaite, L., Schetinin, V., Maple, C.: Comparing robustness of pairwise and multiclass neural-network systems for face recognition. EURASIP J. Adv. Signal Process. 2008(1), 468693 (2007). https://doi.org/10.1155/2008/468693

    Article  MATH  Google Scholar 

  15. Jakaite, L., Schetinin, V., Maple, C., Schult, J.: Bayesian decision trees for EEG assessment of newborn brain maturity. In: The 10th Annual Workshop on Computational Intelligence UKCI 2010 (2010). https://doi.org/10.1109/UKCI.2010.5625584

  16. Schetinin, V., Jakaite, L., Nyah, N., Novakovic, D., Krzanowski, W.: Feature extraction with GMDH-type neural networks for EEG-based person identification. Int. J. Neural Syst. (2018). https://doi.org/10.1142/S0129065717500642

    Article  Google Scholar 

  17. Jakaite, L., Schetinin, V., Schult, J.: Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity. In: 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6, Bristol (2011). https://doi.org/10.1109/CBMS.2011.5999109

  18. Jakaite, L., Schetinin, V., Maple, C.: Bayesian assessment of newborn brain maturity from two-channel sleep electroencephalograms. Comput. Math. Methods Med. 1–7 (2012). https://doi.org/10.1155/2012/629654

    Article  MATH  Google Scholar 

  19. Stoecker, W.V., Chiang, C.S., Moss, R.H.: Texture in skin images: comparison of three methods to determine smoothness. Comput. Med. Imaging Graph. 16(3), 179–190 (1992)

    Article  Google Scholar 

  20. El Abbadi, N.K., Miry, A.H.: Automatic segmentation of skin lesions using histogram thresholding. J. Comput. Sci. 4(10), 632–639 (2014)

    Article  Google Scholar 

  21. Salido, J.A.A., Ruiz Jr., C.: Using deep learning for melanoma detection in dermoscopy images. Int. J. Mach. Learn. Comput. 8(1), 1–8 (2018)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Schetinin, V., Jakaite, L., Krzanowski, W.J.: Prediction of survival probabilities with Bayesian decision trees. Expert Syst. Appl. 40(14), 5466–5476 (2013). https://doi.org/10.1016/j.eswa.2013.04.009

    Article  Google Scholar 

  24. Schetinin, V., Jakaite, L., Krzanowski, W.: Bayesian averaging over decision tree models for trauma severity scoring. Artif. Intell. Med. 84, 139–145 (2018). https://doi.org/10.1016/j.artmed.2017.12.003. (2.0)

    Article  Google Scholar 

  25. Iqbal, S., Shaheen, M., et al.: A machine learning based method for optimal journal classification. In: 2013 8th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 259–264. IEEE (2013)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. corr abs/1512.03385 (2015)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  28. Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574 (2016)

    Google Scholar 

  29. Gutman, D., Codella, N.C.F., Celebi, M.E., Helba, B., Marchetti, M.A., Mishra, N.K., Halpern, A.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging ISBI. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018)

    Google Scholar 

  30. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  31. Juefei-Xu, F., Boddeti, V.N., Savvides, M.: Local binary convolutional neural networks. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  32. Juefei-Xu, F., Boddeti, V.N., Savvides, M.: Local binary convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4284–4293 (2017). https://doi.org/10.1109/CVPR.2017.456

  33. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  34. Capdehourat, G., Corez, A., Bazzano, A., Alonso, R., Musé, P.: Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. Pattern Recogn. Lett. 32(16), 2187–2196 (2011)

    Article  Google Scholar 

  35. Anas, M., Gupta, K., Ahmad, S.: Skin cancer classification using k-means clustering. Int. J. Tech. Res. Appl. 5(1), 62–65 (2017)

    Google Scholar 

  36. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Article  Google Scholar 

  37. Dorj, U.O., Lee, K.K., Choi, J.Y., Lee, M.: The skin cancer classification using deep convolutional neural network. Multimedia Tools Appl. 77, 9909–9924 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iqbal, S., Qureshi, A.N., Akter, M. (2020). Using Local Binary Patterns and Convolutional Neural Networks for Melanoma Detection. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_58

Download citation

Publish with us

Policies and ethics