Skip to main content

Toward Robust Image Classification

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1038))

Abstract

Neural networks are frequently used for image classification, but can be vulnerable to misclassification caused by adversarial images. Attempts to make neural network image classification more robust have included variations on preprocessing (cropping, applying noise, blurring), adversarial training, and dropout randomization. In this paper, we implemented a model for adversarial detection based on a combination of two of these techniques: dropout randomization with preprocessing applied to images within a given Bayesian uncertainty. We evaluated our model on the MNIST dataset, using adversarial images generated using Fast Gradient Sign Method (FGSM), Jacobian-based Saliency Map Attack (JSMA) and Basic Iterative Method (BIM) attacks. Our model achieved an average adversarial image detection accuracy of 97%, with an average image classification accuracy, after discarding images flagged as adversarial of 99%. Our average detection accuracy exceeded that of recent papers using similar techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14. ACM (2017)

    Google Scholar 

  2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  3. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017)

  4. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

    Google Scholar 

  6. Graese, A., Rozsa, A., Boult, T.E.: Assessing threat of adversarial examples on deep neural networks. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 69–74. IEEE (2016)

    Google Scholar 

  7. Guo, C., Rana, M., Cisse, M., van der Maaten, L.: Countering adversarial images using input transformations. In: International Conference on Learning Representations (2018)

    Google Scholar 

  8. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  9. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. In: International Conference on Learning Representations (2017)

    Google Scholar 

  10. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  11. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  12. Ma, X., Li, B., Wang, Y., Erfani, S.M., Wijewickrema, S., Houle, M.E., Schoenebeck, G., Song, D., Bailey, J.: Characterizing adversarial subspaces using local intrinsic dimensionality. In: International Conference on Learning Representations (2018)

    Google Scholar 

  13. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

    Google Scholar 

  14. Papernot, N., McDaniel, P.: Extending defensive distillation. In: IEEE Symposium on Security and Privacy (2017)

    Google Scholar 

  15. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: IEEE European Symposium, Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  16. Rozsa, A., Rudd, E.M., Boult, T.E.: Adversarial diversity and hard positive generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 25–32 (2016)

    Google Scholar 

  17. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Wang, J., Sun, J., Zhang, P., Wang, X.: Detecting adversarial samples for deep neural networks through mutation testing. arXiv preprint arXiv:1805.05010 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Basemah Alshemali , Alta Graham or Jugal Kalita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshemali, B., Graham, A., Kalita, J. (2020). Toward Robust Image Classification. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_35

Download citation

Publish with us

Policies and ethics