Advertisement

A New Approach of Service Platform for Water Optimization in Lettuce Crops Using Wireless Sensor Network

  • Edgar Maya-Olalla
  • Hernán Domínguez-Limaico
  • Carlos Vásquez-Ayala
  • Edgar Jaramillo-Vinueza
  • Marcelo Zambrano V
  • Alexandra Jácome-Ortega
  • Paul D. Rosero-MontalvoEmail author
  • D. H. Peluffo-Ordóñez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1038)

Abstract

Wireless sensor network is implemented and communicated with the cloud through IPv6. The entire system is applied to precision irrigation systems for lettuce crops in Ecuador. The main objective is to provide optimization system for irrigation water for productive purposes and providing crops with the adequate amount of water needed for surviving and producing. To do that the system has a data acquisition system by sensors and this data is stored in web services. By improving the irrigation system crops can be planted throughout the year including summer, the system has a remarkable result for efficient water savings and lettuce crops.

Keywords

WSN Cloud Computing Precision agriculture Irrigation 

References

  1. 1.
    Sartillo Salazar, E., Hernández Hérnandez, J.C., Caporal, R.M., Martinez Hernández, H.P., Ordoñez Flores, R.: Maximum expectation algorithm and neuronal network base radial applied to the estimate of an environmental variable, evapotranspiration in a greenhouse. In: 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, pp. 225–230 (2014).  https://doi.org/10.1109/CONIELECOMP.2014.6808595
  2. 2.
    Bennis, N., et al.: Greenhouse climate modelling and robust control. Comput. Electron. Agric. 61(2), 96–107 (2008).  https://doi.org/10.1016/j.compag.2007.09.014CrossRefGoogle Scholar
  3. 3.
    Food and Agriculture Organization. http://www.fao.org/docrep/009/x0490s/x0490s00.htm
  4. 4.
    Ponce, J.: Ministerio de Agricultura, Ganadería, Acuacultura y Pesca. Plan Nacional de Riego y Drenaje 2012–2026, p. 5Google Scholar
  5. 5.
    Ministerio de Coordinación de la Producción, Empleo y Competitividad. Agenda de Transformación Productiva 2010–2013, p. 137Google Scholar
  6. 6.
    Singh, K., Kumar, P., Singh, B.K.: An associative relational impact of water quality on crop yield: a comprehensive index analysis using LISS-III sensor. IEEE Sens. J. 13(12), 4912–4917 (2013).  https://doi.org/10.1109/JSEN.2013.2276760 CrossRefGoogle Scholar
  7. 7.
    Lee, J., Kang, H., Bang, H., Kang, S.: Dynamic crop field analysis using mobile sensor node. In: 2012 International Conference on ICT Convergence (ICTC), Jeju Island, pp. 7–11 (2012).  https://doi.org/10.1109/ICTC.2012.6386766
  8. 8.
    Vijayabaskar, P.S., Sreemathi, R., Keertanaa, E.: Crop prediction using predictive analytics. In: 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, pp. 370–373 (2017).  https://doi.org/10.1109/ICCPEIC.2017.8290395
  9. 9.
    Ponce-Guevara, K.L.: GreenFarm-DM: a tool for analyzing vegetable crops data from a greenhouse using data mining techniques (first trial). In: IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas 2017, pp. 1–6 (2017).  https://doi.org/10.1109/ETCM.2017.8247519
  10. 10.
    Sahu, S., Chawla, M., Khare, N.: An efficient analysis of crop yield prediction using Hadoop framework based on random forest approach. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, pp. 53–57 (2017).  https://doi.org/10.1109/CCAA.2017.8229770
  11. 11.
    Rosero-Montalvo, P.D., et al.: Data visualization using interactive dimensionality reduction and improved color-based interaction model. In: Biomedical Applications Based on Natural and Artificial Computing. IWINAC. LNCS, vol 10338. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59773-7_30CrossRefGoogle Scholar
  12. 12.
    Velasquez, L.C., Argueta, J., Mazariegos, K.: Implementation of a low cost aerial vehicle for crop analysis in emerging countries. In: IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, pp. 21–27 (2016).  https://doi.org/10.1109/GHTC.2016.7857255
  13. 13.
    Bhanu, B.B., Rao, K.R., Ramesh, J.V.N., Hussain, M.A.: Agriculture field monitoring and analysis using wireless sensor networks for improving crop production. In: 2014 Eleventh International Conference on Wireless and Optical Communications Networks (WOCN), Vijayawada, pp. 1–7 (2014).  https://doi.org/10.1109/WOCN.2014.6923043
  14. 14.
    Ma, X., Luo, W.: The analysis of 6LowPAN technology. In: Pacific-Asia Workshop, vol. 1, pp. 963–966, 19–20 December 2008 (2008)Google Scholar
  15. 15.
    Zhang, Y., Li, Z.: IPv6 conformance testing: theory and practice. In: Test Conference Proceedings ITC 2004, pp. 719–727, 26–28 October 2004 (2004)Google Scholar
  16. 16.
    Accettura, N., Grieco, L., Boggia, G, Camarda, P.: Performance analysis of the RPL routing protocol. In: 2011 IEEE International Conference on Mechatronics (ICM), pp. 767–772, 13–15 April 2011 (2011)Google Scholar
  17. 17.
    Nuñez, D.: Estudio para la migracion de IPv4 a IPv6 para la empresa proveedora de internet Milltec S.A. Quito, Ecuador. EPN, p. 22 (2009)Google Scholar
  18. 18.
    Aslam, M., Rea, S., Pesch, D.: Service provisioning for the WSN cloud, pp. 962–969 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edgar Maya-Olalla
    • 1
  • Hernán Domínguez-Limaico
    • 1
  • Carlos Vásquez-Ayala
    • 1
  • Edgar Jaramillo-Vinueza
    • 1
  • Marcelo Zambrano V
    • 1
  • Alexandra Jácome-Ortega
    • 1
  • Paul D. Rosero-Montalvo
    • 1
    • 2
    Email author
  • D. H. Peluffo-Ordóñez
    • 3
  1. 1.Universidad Técnica del NorteIbarraEcuador
  2. 2.Instituto Tecnológico Superior 17 de JulioUrcuquíEcuador
  3. 3.YachayTechUrcuquíEcuador

Personalised recommendations