Skip to main content

Nicotine Biosynthesis, Transport, and Regulation in Tobacco: Insights into the Evolution of a Metabolic Pathway

  • Chapter
  • First Online:
The Tobacco Plant Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

In Nicotiana tabacum (tobacco), nicotine and related pyridine alkaloids are produced in the roots and accumulate mainly in the leaves. Molecular analyses of nicotine biosynthesis, especially of the steps involved in pyrrolidine and pyridine formation, suggest that this specialized pathway evolved through repeated duplication of primary pathways, followed by the recruitment of the metabolic genes into a regulon. In tobacco, jasmonates elicit nicotine formation via a conserved signaling cascade anchored to the downstream nicotine biosynthesis pathway by master transcription factors of the ERF family, particularly ERF189 and its homolog ERF199. ERF transcription factors upregulate metabolic and transport genes directly involved in the pathway by recognizing cis-elements in the promoters of target genes. A pair of homologous clusters of related ERF genes, including ERF189 and ERF199, occurs in the tobacco genome. ERF189 corresponds to the nicotine-controlling NIC2 locus. A large chromosomal deletion of the cluster that includes ERF189, as found in the nic2 mutant allele, has been exploited to breed low-nicotine tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldwin IT (1989) Mechanism of damage-induced alkaloid production in wild tobacco. J Chem Ecol 25:3–30

    Google Scholar 

  • Bush LP, Cui M, Shi H, Burton HR (2001) Formation of tobacco specific nitrosamines in air-cured tobacco. Rec Adv Tob Sci 27:23–46

    Google Scholar 

  • Cárdenas PD, Sonawane PD, Pollier J et al (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654

    PubMed  PubMed Central  Google Scholar 

  • Chintapakorn Y, Hamill JD (1990) Antisense-mediated reduction in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum. Phytochemistry 68:2465–2479

    Google Scholar 

  • Dawson RF (1942) Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am J Bot 29:66–71

    CAS  Google Scholar 

  • De Boer K, Lye JC, Aitken CD, Su AK, Hamill JD (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312

    Google Scholar 

  • De Boer K, Dalton HL, Edward FJ, Hamill JD (2011a) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72:344–355

    Google Scholar 

  • De Boer K, Tileman S, Pauwels L et al (2011b) APETALA2/ethylene response factor and basic helix-loop-helix transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065

    PubMed  Google Scholar 

  • Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27

    CAS  PubMed  Google Scholar 

  • Gavilano LB, Siminszky B (2007) Isolation and characterization of the cytochrome P450 gene CYP82E5v2 that mediates nicotine to nornicotine conversion in the green leaves of tobacco. Plant Cell Physiol 48:1567–1574

    CAS  PubMed  Google Scholar 

  • Griffith RB, Valleau WD, Stokes GW (1955) Determination and inheritance of nicotine to nornicotine conversion in tobacco. Science 121:343–344

    CAS  PubMed  Google Scholar 

  • Heim WG, Sykes KA, Hildreth SB et al (2007) Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. Phytochemistry 68:454–463

    CAS  PubMed  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hildreth SB, Gehman EA, Yang H et al (2011) Tobacco nicotine uptake permease 1 (NUP1) affects alkaloid metabolism. Proc Natl Acad Sci USA 108:18179–18184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M et al (1998) Differential induction of methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell culture. Plant Mol Biol 38:1101–1111

    CAS  PubMed  Google Scholar 

  • Junker A, Fischer J, Sichhart Y, Brandt W, Dráger B (2013) Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase. Front Plant Sci 4:260

    PubMed  PubMed Central  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298

    CAS  PubMed  Google Scholar 

  • Kajikawa M, Shoji T, Katoh A, Hashimoto T (2011) Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol 155:2010–2022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa M, Sierro N, Hashimoto T, Shoji T (2017a) A model for evolution and regulation of nicotine biosynthesis regulon in tobacco. Plant Signal Behav 12(6):e1338225

    PubMed  PubMed Central  Google Scholar 

  • Kajikawa M, Sierro N, Kawaguchi H et al (2017b) Genomic insights into the evolution of the nicotine biosynthesis pathway in tobacco. Plant Physiol 174:999–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Shitan N, Shoji T, Hashimoto T (2015) Tobacco NUP1 transports both tobacco alkaloids and vitamin B6. Phytochemistry 113:33–40

    CAS  PubMed  Google Scholar 

  • Kato K, Shoji T, Hashimoto T (2014) Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway. Plant Physiol 166:2195–2204

    PubMed  PubMed Central  Google Scholar 

  • Katoh A, Shoji T, Hashimoto T (2007) Molecular cloning of N-methylputrescine oxidase from tobacco. Plant Cell Physiol 48:550–554

    CAS  PubMed  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legg PG, Collins GB (1971) Inheritance of percent total alkaloids in Nicotiana tabacum L. II. Genetic effects of two loci in Burley21 × LA Burley21 population. Can J Genet Cytol 13:287–291

    Google Scholar 

  • Lewis RS, Bowen SW, Keogh MR, Dewey RE (2010) Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene. Phytochemistry 71:1988–1998

    CAS  PubMed  Google Scholar 

  • Li F, Wang W, Zhao N et al (2015a) Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco. Plant Physiol 169:1062–1071

    PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang F, Chang Y et al (2015b) Nicotine O-glucosylation is an evolutionally metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana. Plant Cell 27:1907–1924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang F, Wu R et al (2017) A novel N-methyltransferase in Arabidopsis appears to feed a conserved pathway for nicotinate for nicotinate detoxification among land plants and is associated with lignin biosynthesis. Plant Physiol 174(3):1492–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita M, Shitan N, Sawada K et al (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci USA 106:2447–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naconsie M, Kato K, Shoji T, Hashimoto T (2014) Molecular evolution of N-methylputrescine oxidase in tobacco. Plant Cell Physiol 55:436–444

    CAS  PubMed  Google Scholar 

  • Nakayasu M, Shioya N, Shikata M et al (2018) JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J 94:975–990

    CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    CAS  PubMed  Google Scholar 

  • Pakdeechanuan P, Shoji T, Hashimoto T (2012) Root-to-shoot translocation of alkaloids is dominantly suppressed in Nicotiana alata. Plant Cell Physiol 53:1247–1254

    CAS  PubMed  Google Scholar 

  • Paschold A, Hailtschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91

    CAS  PubMed  Google Scholar 

  • Paul P, Singh SK, Patra B et al (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAK kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213:1107–1123

    CAS  PubMed  Google Scholar 

  • Saitoh K, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480

    CAS  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A et al (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372

    CAS  PubMed  Google Scholar 

  • Sears MT, Zhang H, Rushton PJ et al (2014) NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol Biol 84:49–66

    CAS  PubMed  Google Scholar 

  • Shitan N, Kato K, Shoji T (2014a) Alkaloid transporters in plants. Plant Biotechnol 31:453–463

    CAS  Google Scholar 

  • Shitan N, Minami S, Morita M et al (2014b) Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS ONE 9:e108789

    PubMed  PubMed Central  Google Scholar 

  • Shoji T (2014) ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int Rev Cell Mol Biol 309:308–346

    Google Scholar 

  • Shoji T (2016) Alkaloid biosynthesis and regulation in plants. In: Arimura G, Maffei M (eds) Plant specialized metabolism: genomics, biochemistry, and biological functions. CRC Press, Boca Raton, pp 85–118

    Google Scholar 

  • Shoji T (2019) The recuirtment model of metabolic evolution: jasmonate-responsive transcription factors and a conceptual model for the evolution of metabolic pathways. Front Plant Sci 10:e560

    Google Scholar 

  • Shoji T, Hashimoto T (2011a) Nicotine biosynthesis. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology, John Wiley & Sons, New York, pp 191–216

    Google Scholar 

  • Shoji T, Hashimoto T (2011b) Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant J 67:949–959

    CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2011c) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by a way of the NIC2-locus ERF genes. Plant Cell Physiol 52:1117–1130

    CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2013a) Smoking out the masters: transcriptional regulators for nicotine biosynthesis in tobacco. Plant Biotechnol 30:217–224

    CAS  Google Scholar 

  • Shoji T, Hashimoto T (2013b) Jasmonate-responsive transcription factors: new tools for metabolic engineering and gene discovery. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants: micropropagation and improvement. Springer Publishing, New York, pp 345–357

    Google Scholar 

  • Shoji T, Hashimoto T (2015) Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco. Phytochemistry 113:41–49

    CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2019) Expression of a tobacco nicotine biosynthesis gene depends on the JRE4 transcription factor in heterogonous tomato. J Plant Res 132:173–180

    CAS  PubMed  Google Scholar 

  • Shoji T, Inai K, Yazaki Y et al (2009) Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149:708–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji T, Mishima M, Hashimoto T (2013) Divergent DNA-binding specificities of a group of ETHYLENE RESPONSE FACTOR transcription factors involved in plant defense. Plant Physiol 162:977–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ1 genes. Plant Cell Physiol 49:1003–1012

    CAS  PubMed  Google Scholar 

  • Shoji T, Winz R, Iwase T et al (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440

    CAS  PubMed  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvetris. Plant Cell Physiol 41:831–839

    CAS  PubMed  Google Scholar 

  • Sierro N, Battey JN, Ouadi S et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    CAS  PubMed  Google Scholar 

  • Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:14919–14924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2000) Molecular characterization of qunolinate phosphoribosyltransferase (QPRtase) in Nicotiana. Plant Mol Biol 44:603–617

    CAS  PubMed  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:1074–1080

    CAS  Google Scholar 

  • Thagun C, Imanishi S, Kudo T et al (2016) Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol 57:961–975

    CAS  PubMed  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE (2010) A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J 62:589–600

    CAS  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jamonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perpection, signal transdaction and action in plant stress response, growth and development: an update to the 2007 review in Annals of Botany. Ann Bot 11:1021–1058

    Google Scholar 

  • Xu S, Brockmöller T, Navarro-Quezada A et al (2017) Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci USA 114:6133–6138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hedhili S, Montiel G et al (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes regulating alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    CAS  PubMed  Google Scholar 

  • Zhang HB, Bokowiec MT, Rushton PJ, Han SC, Timko MP (2012) Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Mol Plant 5:73–84

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Takashi Hashimoto of Nara Institute of Science and Technology for his collaboration and support. Research in the author’s group was supported in part by grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research No. 17K07447) to TS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsubasa Shoji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shoji, T. (2020). Nicotine Biosynthesis, Transport, and Regulation in Tobacco: Insights into the Evolution of a Metabolic Pathway. In: Ivanov, N.V., Sierro, N., Peitsch, M.C. (eds) The Tobacco Plant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_9

Download citation

Publish with us

Policies and ethics