Skip to main content

On the Width of Regular Classes of Finite Structures

  • Conference paper
  • First Online:
Automated Deduction – CADE 27 (CADE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11716))

Included in the following conference series:

Abstract

In this work we introduce the notion of decisional width of a finite relational structure and the notion of regular-decisional width of a regular class of finite structures. Our main result states that the first-order theory of any regular-decisional class of finite structures is decidable. Building on the proof of this decidability result, we show that the problem of counting satisfying assignments for a first-order logic formula in a structure of constant width is fixed parameter tractable when parameterized by the width parameter and can be solved in quadratic time with respect to the length of the input representation of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MSO\(_1\) denotes the MSO logic of graphs where edge-set quantifications are not allowed, while MSO\(_2\) is the extension of MSO\(_1\) where we can also quantify over sets of edges.

  2. 2.

    Note that Theorem 5.2 implies that the first-order theory of unlabeled grids is decidable, since unlabeled grids have constant decisional-width. Nevertheless, it is known that the first-order theory of labeled grids is undecidable. In this latter case, we may have labeled grids that require ODDs of arbitrarily high width to be represented.

References

  1. Blumensath, A.: Automatic structures. Diploma thesis. Rheinisch-Westfälische Technische Hochschule Aachen (1999)

    Google Scholar 

  2. Blumensath, A., Gradel, E.: Automatic structures. In: Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science, pp. 51–62. IEEE (2000)

    Google Scholar 

  3. Bollig, B.: On symbolic OBDD-based algorithms for the minimum spanning tree problem. Theoret. Comput. Sci. 447, 2–12 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bollig, B.: On the width of ordered binary decision diagrams. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 444–458. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12691-3_33

    Chapter  Google Scholar 

  5. Bonomo, F., Grippo, L.N., Milanič, M., Safe, M.D.: Graph classes with and without powers of bounded clique-width. Discrete Appl. Math. 199, 3–15 (2016)

    Article  MathSciNet  Google Scholar 

  6. Büchi, J.R.: Weak second order arithmetic and finite automata. Z. Math. Logik Grundl. Math. 6, 66–92 (1960)

    Article  MathSciNet  Google Scholar 

  7. Bulatov, A.A.: Graphs of relational structures: restricted types. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 642–651. ACM (2016)

    Google Scholar 

  8. Chandran, L.S., Kavitha, T.: The treewidth and pathwidth of hypercubes. Discrete Math. 306(3), 359–365 (2006)

    Article  MathSciNet  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  10. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  Google Scholar 

  11. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York (2013)

    MATH  Google Scholar 

  12. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  13. Elgot, C.C.: Decision problems of finite automata and related arithmetics. Trans. Am. Math. Soc. 98, 21–52 (1961)

    Article  MathSciNet  Google Scholar 

  14. Farb, B.: Automatic groups: a guided tour. Enseign. Math. (2) 38(3–4), 291–313 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of relational structure. In: ICML, vol. 1, pp. 170–177 (2001)

    Google Scholar 

  16. Grohe, M.: Algorithmic meta theorems. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, p. 30. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_3

    Chapter  Google Scholar 

  17. Grohe, M.: Algorithmic meta theorems for sparse graph classes. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 16–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06686-8_2

    Chapter  Google Scholar 

  18. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0-1 networks. In: Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided Design, pp. 403–406. IEEE Computer Society Press (1993)

    Google Scholar 

  19. Hliněnỳ, P., Seese, D.: Trees, grids, and MSO decidability: from graphs to matroids. Theoret. Comput. Sci. 351(3), 372–393 (2006)

    Article  MathSciNet  Google Scholar 

  20. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Proceedings of Logic Colloquium, pp. 132–176 (2007)

    Google Scholar 

  21. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60178-3_93

    Chapter  Google Scholar 

  22. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction. In: AAAI/IAAI, pp. 175–181 (2000)

    Google Scholar 

  23. Kreutzer, S.: Algorithmic meta-theorems. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 10–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_3

    Chapter  Google Scholar 

  24. Kruckman, A., Rubin, S., Sheridan, J., Zax, B.: A Myhill-Nerode theorem for automata with advice. In: Proceedings of GANDALF 2012. Electronic Proceedings in Theoretical Computer Science, vol. 96, pp. 238–246 (2012)

    Google Scholar 

  25. Poon, H., Domingos, P.M., Sumner, M.: A general method for reducing the complexity of relational inference and its application to MCMC. In: AAAI, vol. 8, pp. 1075–1080 (2008)

    Google Scholar 

  26. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 301–313. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24618-3_26

    Chapter  Google Scholar 

  27. Seese, D.: The structure of the models of decidable monadic theories of graphs. Ann. Pure Appl. Log. 53(2), 169–195 (1991)

    Article  MathSciNet  Google Scholar 

  28. Sutskever, I., Tenenbaum, J.B., Salakhutdinov, R.R.: Modelling relational data using Bayesian clustered tensor factorization. In: Advances in Neural Information Processing Systems, pp. 1821–1828 (2009)

    Google Scholar 

  29. Woelfel, P.: Symbolic topological sorting with OBDDs. J. Discrete Algorithms 4(1), 51–71 (2006)

    Article  MathSciNet  Google Scholar 

  30. Zaid, F.A., Grädel, E., Reinhardt, F.: Advice automatic structures and uniformly automatic classes. In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017). LIPIcs, vol. 82, pp. 35:1–35:20 (2017)

    Google Scholar 

Download references

Acknowledgments

Alexsander Andrade de Melo acknowledges support from the Brazilian agencies CNPq/GD 140399/2017-8 and CAPES/PDSE 88881.187636/2018-01; and Mateus de Oliveira Oliveira acknowledges support from the Bergen Research Foundation and from the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Oliveira Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrade de Melo, A., de Oliveira Oliveira, M. (2019). On the Width of Regular Classes of Finite Structures. In: Fontaine, P. (eds) Automated Deduction – CADE 27. CADE 2019. Lecture Notes in Computer Science(), vol 11716. Springer, Cham. https://doi.org/10.1007/978-3-030-29436-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29436-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29435-9

  • Online ISBN: 978-3-030-29436-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics