Names Are Not Just Sound and Smoke: Word Embeddings for Axiom Selection

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11716)


First-order theorem proving with large knowledge bases makes it necessary to select those parts of the knowledge base, that are necessary to prove the theorem at hand. We extend syntactic axiom selection procedures like SInE to use semantics of symbol names. For this, not only occurrences of symbol names but also semantically similar names are taken into account. We use a similarity measure based on word embeddings. An evaluation of this similarity based SInE is given using problems from TPTP’s CSR problem class and Adimen-SUMO. This evaluation is done with two very different systems, namely the Hyper tableau prover and the saturation based system E.


  1. 1.
    Álvez, J., Hermo, M., Lucio, P., Rigau, G.: Automatic white-box testing of first-order logic ontologies. CoRR, abs/1705.10219 (2017)Google Scholar
  2. 2.
    Álvez, J., Lucio, P., Rigau, G.: Adimen-SUMO: reengineering an ontology for first-order reasoning. Int. J. Seman. Web Inf. Syst. 8, 80–116 (2012)CrossRefGoogle Scholar
  3. 3.
    Basile, V., Cabrio, E., Schon, C.: KNEWS: using logical and lexical semantics to extract knowledge from natural language. In: Proceedings of the European Conference on Artificial Intelligence (ECAI) (2016)Google Scholar
  4. 4.
    Bender, M., Pelzer, B., Schon, C.: System description: E-KRHyper 1.4. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 126–134. Springer, Heidelberg (2013). Scholar
  5. 5.
    Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with C&C and boxer. In: Proceedings of the ACL 2007 Demo and Poster Sessions, Prague, Czech Republic, pp. 33–36 (2007)Google Scholar
  6. 6.
    de Melo, G., Suchanek, F. M., Pease, A.: Integrating YAGO into the suggested upper merged ontology. In: 20th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2008, Dayton, Ohio, USA, 3–5 November 2008, vol. 1, pp. 190–193. IEEE Computer Society (2008)Google Scholar
  7. 7.
    de Rooij, S., Beek, W., Bloem, P., van Harmelen, F., Schlobach, S.: Are names meaningful? Quantifying social meaning on the semantic web. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 184–199. Springer, Cham (2016). Scholar
  8. 8.
    Firth, J.R.: Papers in Linguistics 1934–1951: Rep. Oxford University Press, Oxford (1991)Google Scholar
  9. 9.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011). Scholar
  10. 10.
    Kuksa, E., Mossakowski, T.: Prover-independent axiom selection for automated theorem proving in Ontohub. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning Co-Located with International Joint Conference on Automated Reasoning, IJCAR 2016, Coimbra, Portugal, 2nd July 2016, volume 1635 of CEUR Workshop Proceedings, pp. 56–68. (2016)Google Scholar
  11. 11.
    Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  12. 12.
    Luo, Z., Sha, Y., Zhu, K.Q., Hwang, S., Wang, Z.: Commonsense causal reasoning between short texts. In: Baral, C., Delgrande, J.P., Wolter, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 421–431. AAAI Press (2016)Google Scholar
  13. 13.
    Maslan, N., Roemmele, M., Gordon, A.S.: One hundred challenge problems for logical formalizations of commonsense psychology. In: Twelfth International Symposium on Logical Formalizations of Commonsense Reasoning, Stanford, CA (2015)Google Scholar
  14. 14.
    Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Logic 7(1), 41–57 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, abs/1301.3781 (2013)Google Scholar
  16. 16.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held, Lake Tahoe, Nevada, United States, 5–8 December 2013, pp. 3111–3119 (2013)Google Scholar
  17. 17.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001, pp. 2–9. ACM (2001)Google Scholar
  20. 20.
    Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)Google Scholar
  21. 21.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014, A Meeting of SIGDAT, A Special Interest Group of the ACL, pp. 1532–1543. ACL (2014)Google Scholar
  22. 22.
    Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: NIPS, pp. 3791–3803 (2017)Google Scholar
  23. 23.
    Roederer, A., Puzis, Y., Sutcliffe, G.: Divvy: an ATP meta-system based on axiom relevance ordering. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 157–162. Springer, Heidelberg (2009). Scholar
  24. 24.
    Schon, C., Siebert, S., Stolzenburg, F.: The CoRg project - cognitive reasoning. KI 33(3) (2019, to appear)CrossRefGoogle Scholar
  25. 25.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). Scholar
  26. 26.
    Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 4–9 February 2017, pp. 4444–4451. AAAI Press (2017)Google Scholar
  27. 27.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet. Web Semant. 6(3), 203–217 (2008)CrossRefGoogle Scholar
  28. 28.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 1–20 (2017)Google Scholar
  29. 29.
    Sutcliffe, G.: The 9th IJCAR automated theorem proving system competition CASC-J9. AI Commun. 31(6), 495–507 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007). Scholar
  31. 31.
    Tiedemann, J.: Parallel data, tools and interfaces in OPUS. In: Calzolari, N., (Conference Chair) et al. (eds.) Proceedings of the Eight International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey. European Language Resources Association (ELRA), May 2012Google Scholar
  32. 32.
    Wang, L., Sun, M., Zhao, W., Shen, K., Liu, J.: Yuanfudao at SemEval-2018 task 11: three-way attention and relational knowledge for commonsense machine comprehension. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, 5–6 June 2018, pp. 758–762. Association for Computational Linguistics (2018)Google Scholar
  33. 33.
    Williams, B., Lieberman, H., Winston, P.H.: Understanding stories with large-scale common sense. In: Gordon, A.S., Miller, R., Turán, G. (eds.) Proceedings of the Thirteenth International Symposium on Commonsense Reasoning, COMMONSENSE 2017, London, UK, 6–8 November 2017, volume 2052 of CEUR Workshop Proceedings. (2017)Google Scholar
  34. 34.
    Zhang, J.: System description: MCS: model-based conjecture searching. CADE 1999. LNCS (LNAI), vol. 1632, pp. 393–397. Springer, Heidelberg (1999). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Computer ScienceUniversity of Koblenz-LandauKoblenzGermany
  2. 2.Institute for Web Science and TechnologiesUniversity of Koblenz-LandauKoblenzGermany

Personalised recommendations