Names Are Not Just Sound and Smoke: Word Embeddings for Axiom Selection
Conference paper
First Online:
- 2 Citations
- 383 Downloads
Abstract
First-order theorem proving with large knowledge bases makes it necessary to select those parts of the knowledge base, that are necessary to prove the theorem at hand. We extend syntactic axiom selection procedures like SInE to use semantics of symbol names. For this, not only occurrences of symbol names but also semantically similar names are taken into account. We use a similarity measure based on word embeddings. An evaluation of this similarity based SInE is given using problems from TPTP’s CSR problem class and Adimen-SUMO. This evaluation is done with two very different systems, namely the Hyper tableau prover and the saturation based system E.
References
- 1.Álvez, J., Hermo, M., Lucio, P., Rigau, G.: Automatic white-box testing of first-order logic ontologies. CoRR, abs/1705.10219 (2017)Google Scholar
- 2.Álvez, J., Lucio, P., Rigau, G.: Adimen-SUMO: reengineering an ontology for first-order reasoning. Int. J. Seman. Web Inf. Syst. 8, 80–116 (2012)CrossRefGoogle Scholar
- 3.Basile, V., Cabrio, E., Schon, C.: KNEWS: using logical and lexical semantics to extract knowledge from natural language. In: Proceedings of the European Conference on Artificial Intelligence (ECAI) (2016)Google Scholar
- 4.Bender, M., Pelzer, B., Schon, C.: System description: E-KRHyper 1.4. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 126–134. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_8CrossRefGoogle Scholar
- 5.Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with C&C and boxer. In: Proceedings of the ACL 2007 Demo and Poster Sessions, Prague, Czech Republic, pp. 33–36 (2007)Google Scholar
- 6.de Melo, G., Suchanek, F. M., Pease, A.: Integrating YAGO into the suggested upper merged ontology. In: 20th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2008, Dayton, Ohio, USA, 3–5 November 2008, vol. 1, pp. 190–193. IEEE Computer Society (2008)Google Scholar
- 7.de Rooij, S., Beek, W., Bloem, P., van Harmelen, F., Schlobach, S.: Are names meaningful? Quantifying social meaning on the semantic web. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 184–199. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_12CrossRefGoogle Scholar
- 8.Firth, J.R.: Papers in Linguistics 1934–1951: Rep. Oxford University Press, Oxford (1991)Google Scholar
- 9.Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23CrossRefGoogle Scholar
- 10.Kuksa, E., Mossakowski, T.: Prover-independent axiom selection for automated theorem proving in Ontohub. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning Co-Located with International Joint Conference on Automated Reasoning, IJCAR 2016, Coimbra, Portugal, 2nd July 2016, volume 1635 of CEUR Workshop Proceedings, pp. 56–68. CEUR-WS.org (2016)Google Scholar
- 11.Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
- 12.Luo, Z., Sha, Y., Zhu, K.Q., Hwang, S., Wang, Z.: Commonsense causal reasoning between short texts. In: Baral, C., Delgrande, J.P., Wolter, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 421–431. AAAI Press (2016)Google Scholar
- 13.Maslan, N., Roemmele, M., Gordon, A.S.: One hundred challenge problems for logical formalizations of commonsense psychology. In: Twelfth International Symposium on Logical Formalizations of Commonsense Reasoning, Stanford, CA (2015)Google Scholar
- 14.Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Logic 7(1), 41–57 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, abs/1301.3781 (2013)Google Scholar
- 16.Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held, Lake Tahoe, Nevada, United States, 5–8 December 2013, pp. 3111–3119 (2013)Google Scholar
- 17.Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
- 18.Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
- 19.Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001, pp. 2–9. ACM (2001)Google Scholar
- 20.Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)Google Scholar
- 21.Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014, A Meeting of SIGDAT, A Special Interest Group of the ACL, pp. 1532–1543. ACL (2014)Google Scholar
- 22.Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: NIPS, pp. 3791–3803 (2017)Google Scholar
- 23.Roederer, A., Puzis, Y., Sutcliffe, G.: Divvy: an ATP meta-system based on axiom relevance ordering. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 157–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_13CrossRefGoogle Scholar
- 24.Schon, C., Siebert, S., Stolzenburg, F.: The CoRg project - cognitive reasoning. KI 33(3) (2019, to appear)CrossRefGoogle Scholar
- 25.Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
- 26.Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 4–9 February 2017, pp. 4444–4451. AAAI Press (2017)Google Scholar
- 27.Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from Wikipedia and WordNet. Web Semant. 6(3), 203–217 (2008)CrossRefGoogle Scholar
- 28.Sutcliffe, G.: The TPTP problem library and associated infrastructure: from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 1–20 (2017)Google Scholar
- 29.Sutcliffe, G.: The 9th IJCAR automated theorem proving system competition CASC-J9. AI Commun. 31(6), 495–507 (2018)MathSciNetCrossRefGoogle Scholar
- 30.Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_20CrossRefGoogle Scholar
- 31.Tiedemann, J.: Parallel data, tools and interfaces in OPUS. In: Calzolari, N., (Conference Chair) et al. (eds.) Proceedings of the Eight International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey. European Language Resources Association (ELRA), May 2012Google Scholar
- 32.Wang, L., Sun, M., Zhao, W., Shen, K., Liu, J.: Yuanfudao at SemEval-2018 task 11: three-way attention and relational knowledge for commonsense machine comprehension. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, 5–6 June 2018, pp. 758–762. Association for Computational Linguistics (2018)Google Scholar
- 33.Williams, B., Lieberman, H., Winston, P.H.: Understanding stories with large-scale common sense. In: Gordon, A.S., Miller, R., Turán, G. (eds.) Proceedings of the Thirteenth International Symposium on Commonsense Reasoning, COMMONSENSE 2017, London, UK, 6–8 November 2017, volume 2052 of CEUR Workshop Proceedings. CEUR-WS.org (2017)Google Scholar
- 34.Zhang, J.: System description: MCS: model-based conjecture searching. CADE 1999. LNCS (LNAI), vol. 1632, pp. 393–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7_37CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019