Skip to main content

Hypoparathyroidism in Children

  • Chapter
  • First Online:
  • 543 Accesses

Abstract

Hypoparathyroidism is a very uncommon endocrine disorder in children. In contrast to adults, in whom most cases of hypoparathyroidism are due to neck surgery, in children and adolescents, hypoparathyroidism is typically due to a genetic etiology. Identifying the genetic basis for hypoparathyroidism has important implications for both the patient and their family and can guide treatment as well as facilitate screening for anticipated comorbidities. Treatment and management can be challenging, especially in infancy. It is important to monitor treatment of hypoparathyroidism regularly in order to reduce the risk of developing nephrocalcinosis and nephrolithiasis. For at least some children with hypoparathyroidism who do not optimally respond to conventional therapy, PTH and PTH analogs represent an alternative treatment option.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sargent JD, Stukel TA, Kresel J, Klein RZ. Normal values for random urinary calcium to creatinine ratios in infancy. J Pediatr. 1993;123(3):393–7.

    Article  CAS  PubMed  Google Scholar 

  2. Tsang RC, Light IJ, Sutherland JM, Kleinman LI. Possible pathogenetic factors in neonatal hypocalcemia of prematurity. The role of gestation, hyperphosphatemia, hypomagnesemia, urinary calcium loss, and parathormone responsiveness. J Pediatr. 1973;82(3):423–9.

    Article  CAS  PubMed  Google Scholar 

  3. Hsu SC, Levine MA. Perinatal calcium metabolism: physiology and pathophysiology. Sem Neonatol. 2004;9(1):23–36.

    Article  Google Scholar 

  4. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002;31(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  5. Fujimura J, Nozu K, Yamamura T, Minamikawa S, Nakanishi K, Horinouchi T, et al. Clinical and genetic characteristics in patients with Gitelman syndrome. Kidney Int Rep. 2019;4(1):119–25.

    Article  PubMed  Google Scholar 

  6. Goldberg R, Motzkin B, Marion R, Scambler PJ, Shprintzen RJ. Velo-cardio-facial syndrome: a review of 120 patients. Am J Med Genet. 1993;45(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  7. Greenberg F, Elder FF, Haffner P, Northrup H, Ledbetter DH. Cytogenetic findings in a prospective series of patients with DiGeorge anomaly. Am J Hum Genet. 1988;43(5):605–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li D, Gordon CT, Oufadem M, Amiel J, Kanwar HS, Bakay M, et al. Heterozygous mutations in TBX1 as a cause of isolated hypoparathyroidism. J Clin Endocrinol Metab. 2018;103(11):4023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kapadia CR, Kim YE, McDonald-McGinn DM, Zackai EH, Katz LE. Parathyroid hormone reserve in 22q11.2 deletion syndrome. Genet Med. 2008;10(3):224–8.

    Article  CAS  PubMed  Google Scholar 

  10. Jyonouchi S, McDonald-McGinn DM, Bale S, Zackai EH, Sullivan KE. CHARGE (coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome: a comparison of immunologic and nonimmunologic phenotypic features. Pediatrics. 2009;123(5):e871–7.

    Article  PubMed  Google Scholar 

  11. Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature. 2000;406(6794):419–22.

    Article  PubMed  CAS  Google Scholar 

  12. Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, et al. GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet. 2001;38(6):374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chien WW, Leiding JW, Hsu AP, Zalewski C, King K, Holland SM, et al. Auditory and vestibular phenotypes associated with GATA3 mutation. Otol Neurotol. 2014;35(4):577–81.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22.

    Article  CAS  PubMed  Google Scholar 

  15. Gordon RJ, Levine MA. Genetic disorders of parathyroid development and function. Endocrinol Metab Clin N Am. 2018;47(4):809–23.

    Article  Google Scholar 

  16. Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, et al. Mutations affecting G-protein subunit alpha11 in hypercalcemia and hypocalcemia. N Engl J Med. 2013;368(26):2476–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li D, Opas EE, Tuluc F, Metzger DL, Hou C, Hakonarson H, et al. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization. J Clin Endocrinol Metab. 2014;99(9):E1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown EM, Pollak M, Chou YH, Seidman CE, Seidman JG, Hebert SC. The cloning of extracellular Ca(2+)-sensing receptors from parathyroid and kidney: molecular mechanisms of extracellular Ca(2+)-sensing. J Nutr. 1995;125(7 Suppl):1965s–70s.

    Article  CAS  PubMed  Google Scholar 

  19. Parkinson DB, Thakker RV. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet. 1992;1(2):149–52.

    Article  CAS  PubMed  Google Scholar 

  20. Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 1990;86(4):1084–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee S, Mannstadt M, Guo J, Kim SM, Yi HS, Khatri A, et al. A homozygous [Cys25]PTH(1-84) mutation that impairs PTH/PTHrP receptor activation defines a novel form of hypoparathyroidism. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30(10):1803–13.

    Article  CAS  Google Scholar 

  22. Canaff L, Zhou X, Mosesova I, Cole DE, Hendy GN. Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat. 2009;30(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  23. Mirczuk SM, Bowl MR, Nesbit MA, Cranston T, Fratter C, Allgrove J, et al. A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab. 2010;95(7):3512–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ding C, Buckingham B, Levine MA. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest. 2001;108(8):1215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bowl MR, Mirczuk SM, Grigorieva IV, Piret SE, Cranston T, Southam L, et al. Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism. Hum Mol Genet. 2010;19(10):2028–38.

    Article  CAS  PubMed  Google Scholar 

  26. Guan B, Welch JM, Sapp JC, Ling H, Li Y, Johnston JJ, et al. GCM2-activating mutations in familial isolated hyperparathyroidism. Am J Hum Genet. 2016;99(5):1034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shoback DM, Silva BC, Thakker RV, Vokes T, Bouillon R, Bilezikian JP, et al. Presentation of hypoparathyroidism: etiologies and clinical features. J Clin Endocrinol Metabol. 2016;101(6):2300–12.

    Article  CAS  Google Scholar 

  28. Li D, Streeten EA, Chan A, Lwin W, Tian L, Pellegrino da Silva R, et al. Exome sequencing reveals mutations in AIRE as a cause of isolated hypoparathyroidism. J Clin Endocrinol Metab. 2017;102(5):1726–33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rubin MR, Cusano NE, Bilezikian JP, Brandi ML, Potts JT Jr, Mannstadt M, et al. Management of hypoparathyroidism: present and future. J Clin Endocrinol Metabol. 2016;101(6):2313–24.

    Article  CAS  Google Scholar 

  30. Brandi ML, Bilezikian JP, Shoback D, Bouillon R, Clarke BL, Thakker RV, et al. Management of hypoparathyroidism: summary statement and guidelines. J Clin Endocrinol Metab. 2016;101(6):2273–83.

    Article  CAS  PubMed  Google Scholar 

  31. Mannstadt M, Bilezikian JP, Thakker RV, Hannan FM, Clarke BL, Rejnmark L, et al. Hypoparathyroidism. Nat Rev Dis Primers. 2017;3:17055.

    Article  PubMed  Google Scholar 

  32. So NP, Osorio AV, Simon SD, Alon US. Normal urinary calcium/creatinine ratios in African-American and Caucasian children. Pediatr Nephrol (Berlin, Germany). 2001;16(2):133–9.

    Article  CAS  Google Scholar 

  33. Burritt MF, Slockbower JM, Forsman RW, Offord KP, Bergstralh EJ, Smithson WA. Pediatric reference intervals for 19 biologic variables in healthy children. Mayo Clin Proc. 1990;65(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  34. Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997;131(2):252–7.

    Article  CAS  PubMed  Google Scholar 

  35. Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol. 1997;200.(Pt 2:295–302.

    CAS  PubMed  Google Scholar 

  36. Rubin MR, Bilezikian JP. Parathyroid hormone as an anabolic skeletal therapy. Drugs. 2005;65(17):2481–98.

    Article  CAS  PubMed  Google Scholar 

  37. Winer KK, Sinaii N, Peterson D, Sainz B Jr, Cutler GB Jr. Effects of once versus twice-daily parathyroid hormone 1-34 therapy in children with hypoparathyroidism. J Clin Endocrinol Metab. 2008;93(9):3389–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winer KK, Sinaii N, Reynolds J, Peterson D, Dowdy K, Cutler GB Jr. Long-term treatment of 12 children with chronic hypoparathyroidism: a randomized trial comparing synthetic human parathyroid hormone 1-34 versus calcitriol and calcium. J Clin Endocrinol Metab. 2010;95(6):2680–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winer KK. Advances in the treatment of hypoparathyroidism with PTH 1-34. Bone. 2019;120:535–41.

    Article  CAS  PubMed  Google Scholar 

  40. Peterson D, Cutler GB Jr, Reynolds J, Dowdy K, Sinaii N, Winer KK. Long-term treatment of 12 children with chronic hypoparathyroidism: a randomized trial comparing synthetic human parathyroid hormone 1-34 versus calcitriol and calcium. J Clin Endocrinol Metabol. 2010;95(6):2680–8.

    Article  CAS  Google Scholar 

  41. Winer KK, Zhang B, Shrader JA, Peterson D, Smith M, Albert PS, et al. Synthetic human parathyroid hormone 1-34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J Clin Endocrinol Metab. 2012;97(2):391–9.

    Article  CAS  PubMed  Google Scholar 

  42. Winer KK, Fulton KA, Albert PS, Cutler GB. Effects of pump versus twice-daily injection delivery of synthetic parathyroid hormone 1-34 in children with severe congenital hypoparathyroidism. J Pediatr. 2014;165(3):556–63. e1

    Article  PubMed Central  CAS  Google Scholar 

  43. Winer KK, Kelly A, Johns A, Zhang B, Dowdy K, Kim L, et al. Long-term parathyroid hormone 1-34 replacement therapy in children with hypoparathyroidism. J Pediatr. 2018;203:391–9 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burkett L, Mittelman SD, Geffner ME, Hendy GN, Mosesova I, Canaff L, et al. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metabol. 2006;91(7):2474–9.

    Article  CAS  Google Scholar 

  45. Theman TA, Collins MT, Dempster DW, Zhou H, Reynolds JC, Brahim JS, et al. Clinical vignette: PTH(1–34) replacement therapy in a child with hypoparathyroidism caused by a sporadic calcium receptor mutation. J Bone Miner Res. 2009;24(5):964–73.

    Article  CAS  PubMed  Google Scholar 

  46. Ramakrishnan Y, Cocks HC. Impact of recombinant PTH on management of hypoparathyroidism: a systematic review. Eur Arch Otorhinolaryngol. 2016;273(4):827–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Dr. Michael A. Levine has served as an advisory board member, research investigator, and consultant for Shire/Takeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gordon, R.J., Levine, M.A. (2020). Hypoparathyroidism in Children. In: Cusano, N. (eds) Hypoparathyroidism. Springer, Cham. https://doi.org/10.1007/978-3-030-29433-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29433-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29432-8

  • Online ISBN: 978-3-030-29433-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics