Skip to main content

Computer-Assisted Diagnosis of Thyroid Cancer Using Medical Images: A Survey

  • Conference paper
  • First Online:
Proceedings of ICRIC 2019

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 597))

Abstract

Thyroid cancer is the common cancer which can be found mostly in women as compared to men around the world. Thyroid gland is a butterfly-shaped gland that is located around the voice box. Earlier, doctors used to evaluate thyroid cancer manually, but now they are using computer-aided diagnosis (CAD) system for automatic detection. As incidence rate of thyroid cancer is increasing day by day, therefore, a better technology is required for its earlier detection. There are different types of imaging modalities, such as magnetic resonance imaging (MRI), ultrasound (US), and computerized tomography (CT), which are utilized for early detection of diseases. This paper presents and discusses the major trends for an exhaustive overview of thyroid nodule detection, segmentation, classification, and feature extraction techniques. The approaches used in CAD are summarized with their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endocrineweb Homepage: https://www.endocrineweb.com/conditions/thyroid/thyroid-nodules/. Last accessed 2018/11/15

  2. Cancer Treatment Centers of America Homepage: www.cancercenter.com/cancer/. Last accessed 2018/11/17

  3. Cancer.Net Homepage: https://www.cancer.net/cancer-types/thyroid-cancer/statistics. Last accessed 2018/11/21

  4. Cancer Stat Facts Homepage: https://seer.cancer.gov/statfacts/html/thyro.html. Last accessed 2018/11/21

  5. Slideshare Image Pre-processing: https://www.slideshare.net/ASHI14march/image-pre-processing. Last accessed 2018/11/22

  6. Babu, J.J.J., Sudha, G.F.: Adaptive speckle reduction in ultrasound images using fuzzy logic on Coefficient of Variation. Biomed. Signal Process. Control 23, 93–103 (2016)

    Google Scholar 

  7. Babu, J.J.J., Sudha, G.F.: Non-subsampled contourlet transform based image denoising in ultrasound thyroid images using adaptive binary morphological operations. IET Comput. Vis. 8(6), 718–728 (2014)

    Google Scholar 

  8. Kim, M., Song, T.: Speckle reduction of ultrasound B-mode image using patch recurrence. In: International Conference on Biomedical Engineering and Systems, pp. 1–5 (2016)

    Google Scholar 

  9. Narayan, N.S.: Speckle patch similarity for echogenicity-based multiorgan segmentation in ultrasound images of the thyroid gland. IEEE J. Biomed. Health Inf. 21(1), 172–183 (2017)

    Article  Google Scholar 

  10. Kang, J., Lee, J.Y., Yoo, Y.: A new feature-enhanced speckle reduction method based on multiscale analysis for ultrasound b-mode imaging. IEEE Trans. Biomed. Eng. 63(6), 1178–1191 (2016)

    Google Scholar 

  11. Koundal, D., Gupta, S., Singh, S.: Nakagami-based total variation method for speckle reduction in thyroid ultrasound images. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 230(2), 97–110 (2016)

    Google Scholar 

  12. Koundal, D., Gupta, S., Singh, S.: Speckle reduction method for thyroid ultrasound images in neutrosophic domain. IET Image Process. 10(2), 167–175 (2016)

    Google Scholar 

  13. Morin, R.: Motion estimation-based image enhancement in ultrasound imaging. Ultrasonics 60, 19–26 (2015)

    Google Scholar 

  14. Tsantis, Stavros.: Inter-scale wavelet analysis for speckle reduction in thyroid ultrasound images. Comput. Med. Imaging Graph. 31(3), 117–127 (2007)

    Google Scholar 

  15. Toonkum, P., Chinrungrueng, C.: Speckle reduction of ultrasound images based on locally regularized Savitzky-Golay filters. In: 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–5. IEEE (2015)

    Google Scholar 

  16. Huang, J., Yang, X.: Fast reduction of speckle noise in real ultrasound images. Signal Process. 93(4), 684–694 (2013)

    Google Scholar 

  17. Elyasi, I., Pourmina, M.A.: Reduction of speckle noise ultrasound images based on TV regularization and modified bayes shrink techniques. Optik-Int. J. Light Electr. Optics 127(24), 11732–11744 (2016)

    Google Scholar 

  18. Hacini, M., Hachouf, F., Djemal, K.: A new speckle filtering method for ultrasound images based on a weighted multiplicative total variation. Signal Process. 103, 214–229 (2014)

    Google Scholar 

  19. Nugroho, H.A., Nugroho, A., Choridah, L.: Thyroid nodule segmentation using active contour bilateral filtering on ultrasound images. In: International Conference on Quality in Research (QiR), pp. 43–46. IEEE (2015)

    Google Scholar 

  20. Chang, C.-Y., Hong, Y.-C., Tseng, C.: A neural network for thyroid segmentation and volume estimation in CT images. IEEE Comput. Intell. Mag. 6(4), 43–55 (2011)

    Article  Google Scholar 

  21. Keerthivasan, A., Jaganath Babu, J., Sudha, G.F.: Speckle noise reduction in ultrasound images using fuzzy logic based on histogram and directional differences. In: International Conference on Communications and Signal Processing (ICCSP), pp. 499–503. IEEE (2013)

    Google Scholar 

  22. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  23. Zhao, J., Zhang, L., Tian, H.: Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology. Health Inf. Sci. Syst. 1(1) (2013)

    Google Scholar 

  24. Babu, J.J.J., Sudha, G.F.: A density current modeled adaptive weighted average despeckling filter for ultrasound thyroid images. Indian J. Sci. Technol. 9(46), 1–11 (2016)

    Google Scholar 

  25. Guo, W., Wang, Y., Yu, J.: Ultrasound harmonic imaging with reducing speckle noise by an interlaced iterative frequency compounding approach. Biomed. Eng. Inf. 34–39 (2015)

    Google Scholar 

  26. Măluţan, R., Terebeş, R., Germain, C., Borda, M., Cîşlariu, M.: Speckle noise removal in ultrasound images using sparse code shrinkage. In: E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2015)

    Google Scholar 

  27. Maroulis, D.E., Savelonas, M.A., Iakovidis, D.K., Karkanis, S.A., Dimitropoulos, N.: Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images. IEEE Trans. Inf. Technol. Biomed. 11(5), 537–543 (2007)

    Google Scholar 

  28. Tsantis, S., Dimitropoulos, N., Cavouras, D., Nikiforidis, G.: A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Comput. Methods Prog. Biomed. 84(3), 86–98 (2006)

    Google Scholar 

  29. Du, W, Sang, N.: An effective method for ultrasound thyroid nodules segmentation. International Symposium on Bioelectronics and Bioinformatics (ISBB), pp. 207–210. IEEE (2015)

    Google Scholar 

  30. Chang, C.-Y., Lei, Y.-F., Tseng, C.-H., Shih, S.-R.: Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 57(6), pp. 1348–1357 (2010)

    Google Scholar 

  31. Iakovidis, D.K., Savelonas, M.A., Karkanis, S.A., Maroulis, D.E.: A genetically optimized level set approach to segmentation of thyroid ultrasound images. Appl. Intell. 27(3), 193–203 (2007)

    Google Scholar 

  32. Koundal, D.: Texture-based image segmentation using neutrosophic clustering. IET Image Process. 11(8), 640–645 (2017)

    Google Scholar 

  33. Keramidas, E.G., Iakovidis, D.K., Maroulis, D., Karkanis, S.: Efficient and effective ultrasound image analysis scheme for thyroid nodule detection. In: International Conference Image Analysis and Recognition, pp. 1052–1060. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  34. Koundal, D., Gupta, S., Singh, S.: Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Appl. Soft Comput. 40, 86–97 (2016)

    Google Scholar 

  35. Savelonas, M.A., Iakovidis, D.K., Dimitropoulos, N., Maroulis, D.: Variable background active contour model for automatic detection of thyroid nodules in ultrasound images. IEEE Trans. Inf. Technol. Biomed. 11(5), 17–20 (2007)

    Google Scholar 

  36. Savelonas, M.A., Iakovidis, D.K., Dimitropoulos, N., Maroulis, D.: Computational characterization of thyroid tissue in the radon domain. Comput.-Based Med. Syst. 189–192 (2007)

    Google Scholar 

  37. Savelonas, M.A., Iakovidis, D.K., Legakis, I., Maroulis, D.: Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans. Inf. Technol. Biomed. 13(4), 519–527 (2009)

    Google Scholar 

  38. Keramidas, E.G., Maroulis, D., Iakovidis, D.K.: ΤND: a thyroid nodule detection system for analysis of ultrasound images and videos. J. Med. Syst. 36(3), 1271–1281 (2012)

    Google Scholar 

  39. Ma, J., Luo, S. Dighe, M., Lim, D.-J. Kim, Y.: Differential diagnosis of thyroid nodules with ultrasound elastography based on support vector machines. In: IEEE International Ultrasonics Symposium, pp. 1372–1375 (2010)

    Google Scholar 

  40. Chang, Chuan-Yu, Hsin-Cheng Huang, and Shao-Jer Chen.: Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed. Eng.: Appl., Basis Commun. 22(2), 81–89 (2010)

    Google Scholar 

  41. Chang, C.-Y., Lei, Y.-F., Tseng, C.-H., Shih, S.-R.: Thyroid segmentation and volume estimation in ultrasound images. IEEE Trans. Biomed. Eng. 57(6), 1348–1357 (2010)

    Article  Google Scholar 

  42. Ma, J., Wu, F., Zhao, Q., Kong, D.: Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 12(11), 1895–1910 (2017)

    Google Scholar 

  43. Tsantis, S., Glotsos, D., Kalatzis, G., Dimitropoulos, N., Nikiforidis, G., Cavouras, D.: Automatic contour delineation of thyroid nodules in ultrasound images employing the wavelet transform modulus-maxima chains. In: 1st International Conference from Scientific Computing to Computational Engineering, pp. 8–10 (2004)

    Google Scholar 

  44. Kollorz, E., Angelopoulou, E., Beck, M., Schmidt, D., Kuwert T.: Using power watersheds to segment benign thyroid nodules in ultrasound image data. In Bildverarbeitung für die Medizin 124–128 (2011)

    Google Scholar 

  45. Maroulis, D.E., Savelonas, M.A., Karkanis, S.A., Iakovidis, D.K., Dimitropoulos, N.: Computer-aided thyroid nodule detection in ultrasound images. Comput.-Based Med. Syst. 271–276 (2005)

    Google Scholar 

  46. Gireesha, H. M., S. Nanda.: Thyroid nodule segmentation and classification in ultrasound images. Int. J. Eng. Res. Technol. 2252–2256 (2014)

    Google Scholar 

  47. Ganesh, P., Babu, J.: Automated thyroid nodule segmentation algorithm for ultrasound images. Int. Conf. Signal Process. 3(3), 85–90 (2014)

    Google Scholar 

  48. Koundal, D., Gupta, S., Singh, S.: Computer aided thyroid nodule detection system using medical ultrasound images. Biomed. Signal Process. Control 40, 117–130 (2018)

    Google Scholar 

  49. Saiti, F., Naini, A.A., Shoorehdeli, M.A., Teshnehlab, M.: Thyroid disease diagnosis based on genetic algorithms using PNN and SVM. Bioinf. Biomed. Eng. 1–4 (2009)

    Google Scholar 

  50. Shukla, A., Tiwari, R., Kaur, P., Janghel, R.R.: Diagnosis of thyroid disorders using artificial neural networks. IEEE Adv. Comput. Conf. 1016–1020 (2009)

    Google Scholar 

  51. Keleş, A., Keleş, A.: ESTDD: expert system for thyroid diseases diagnosis. Expert Syst. Appl. 1, 242–246 (2008)

    Google Scholar 

  52. Polat, K., Şahan, S., Güneş, S.: A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis. Expert Syst. Appl. 32(4), 1141–1147 (2007)

    Google Scholar 

  53. Pechenizkiy, M., Tsymbal, A., Puuronen, S., Patterson, D.: Feature extraction for dynamic integration of classifiers. Fundamenta Informaticae 77(3), 243–275 (2007)

    Google Scholar 

  54. Singh, N., Jindal, A.: A segmentation method and comparison of classification methods for thyroid ultrasound images. Int. J. Comput. Appl. 50(11), 43–49 (2012)

    Google Scholar 

  55. Malathi, M., Srinivasan, S.: Classification of ultrasound thyroid nodule using feed forward neural network. World Eng. Appl. Sci. 8(1), 12–17 (2017)

    Google Scholar 

  56. Nugroho, H.A., Rahmawaty, M., Triyani, Y., Ardiyanto, I.: Texture analysis for classification of thyroid ultrasound images. In: Electronics Symposium (IES), pp. 476–480 (2016)

    Google Scholar 

  57. Chang, C-Y, Huang H.-C., Chen, S.-J.: Thyroid nodule segmentation and component analysis in ultrasound images. Biomed. Eng.: Appl., Basis Commun. 22(2), 910–917 (2009)

    Google Scholar 

  58. Selvathi, D., Sharnitha, V.S.: Thyroid classification and segmentation in ultrasound images using machine learning algorithms. In Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), pp. 836–841 (2011)

    Google Scholar 

  59. Chang, C.-Y., Huang, H.-C., Chen, S.-J.: Automatic thyroid nodule segmentation and component analysis in ultrasound images. Biomed. Eng.: Appl., Basis Commun. 22(2), 81–89 (2010)

    Google Scholar 

  60. Garg, H, Jindal, A.: Segmentation of thyroid gland in ultrasound image using neural network. In Computing, Communications and Networking Technologies (ICCCNT), pp. 1–5 (2013)

    Google Scholar 

  61. Kim, H.-C., Ghahramani, Z.: Bayesian Gaussian process classification with the EM-EP algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), pp. 1948–1959 (2006)

    Google Scholar 

  62. Amasyalı, S.A., Albayrak, F.S.: Fuzzy c-means clustering on medical diagnostic systems. In: International 12th Turkish Symposium Artificial intelligence and neural networks (2003)

    Google Scholar 

Download references

Conflict of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Koundal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anand, V., Koundal, D. (2020). Computer-Assisted Diagnosis of Thyroid Cancer Using Medical Images: A Survey. In: Singh, P., Kar, A., Singh, Y., Kolekar, M., Tanwar, S. (eds) Proceedings of ICRIC 2019 . Lecture Notes in Electrical Engineering, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-030-29407-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29407-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29406-9

  • Online ISBN: 978-3-030-29407-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics