Advertisement

Personality Is Revealed During Weekends: Towards Data Minimisation for Smartphone Based Personality Classification

  • Mohammed KhwajaEmail author
  • Aleksandar Matic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11748)

Abstract

Previous literature has explored automatic personality modelling using smartphone data for its potential to personalise mobile services. Although passive modelling of personality removes the burden of completing lengthy questionnaires, the fact that such models typically require a few weeks or months of personal data can negatively impact user’s engagement. In this study, we explore the feasibility of reducing the duration of data collection in the context of personality classification. We found that only one or two weekends can suffice for achieving state-of-the-art accuracy between 66% and 71% for classifying the five personality traits. These results provide lessons for practicing “data minimisation” – a key principle of privacy laws.

Keywords

Personality prediction Smartphone sensing Big five 

Notes

Acknowledgements

This work has been supported by the European Union’s Horizon 2020 research and innovation programme, under the Marie Sklodowska-Curie grant agreement no. 722561.

References

  1. 1.
    Abel, F., Henze, N., Herder, E., Krause, D.: Interweaving public user profiles on the web. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 16–27. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13470-8_4CrossRefGoogle Scholar
  2. 2.
    Canzian, L., Musolesi, M.: Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing, pp. 1293–1304. ACM (2015)Google Scholar
  3. 3.
    Catal, C., et al.: Cross-cultural personality prediction based on twitter data. J. Softw. 12(11), 882–892 (2017)CrossRefGoogle Scholar
  4. 4.
    Chittaranjan, G., Blom, J., Gatica-Perez, D.: Who’s who with big-five: analyzing and classifying personality traits with smartphones. In: 2011 15th Annual International Symposium on Wearable Computers (ISWC), pp. 29–36. IEEE (2011)Google Scholar
  5. 5.
    Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Pers. Ubiquit. Comput. 17(3), 433–450 (2013)CrossRefGoogle Scholar
  6. 6.
    Corr, P.J., Matthews, G.: The Cambridge handbook of personality psychology. Cambridge University Press Cambridge, UK (2009)CrossRefGoogle Scholar
  7. 7.
    DeYoung, C.G., Gray, J.R.: Personality neuroscience: explaining individual differences in affect, behaviour and cognition. In: The Cambridge handbook of personality psychology, pp. 323–346 (2009)Google Scholar
  8. 8.
    Ferwerda, B., Schedl, M.: Personality-based user modeling for music recommender systems. In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 254–257. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46131-1_29CrossRefGoogle Scholar
  9. 9.
    Ferwerda, B., Tkalcic, M.: You are what you post: what the content of instagram pictures tells about users’ personality. In: The 23rd International on Intelligent User Interfaces (2018)Google Scholar
  10. 10.
    Goldberg, L.R., et al.: The international personality item pool and the future of public-domain personality measures. J. Res. Pers. 40(1), 84–96 (2006)CrossRefGoogle Scholar
  11. 11.
    Gow, A.J., Whiteman, M.C., Pattie, A., Deary, I.J.: Goldberg’s ‘IPIP’ big-five factor markers: internal consistency and concurrent validation in Scotland. Pers. Individ. Differ. 39(2), 317–329 (2005)CrossRefGoogle Scholar
  12. 12.
    Jia, Y., et al.: Personality-targeted gamification: a survey study on personality traits and motivational affordances. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2001–2013. ACM (2016)Google Scholar
  13. 13.
    Lee, M.J., Ferwerda, B.: Personalizing online educational tools. In: Proceedings of the 2017 ACM Workshop on Theory-Informed User Modeling for Tailoring and Personalizing Interfaces, pp. 27–30. ACM (2017)Google Scholar
  14. 14.
    Minamikawa, A., Yokoyama, H.: Blog tells what kind of personality you have: egogram estimation from japanese weblog. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, pp. 217–220. ACM (2011)Google Scholar
  15. 15.
    Mønsted, B., Mollgaard, A., Mathiesen, J.: Phone-based metric as a predictor for basic personality traits. J. Res. Pers. 74, 16–22 (2018)CrossRefGoogle Scholar
  16. 16.
    de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personality using novel mobile phone-based metrics. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37210-0_6CrossRefGoogle Scholar
  17. 17.
    de Oliveira, R., Cherubini, M., Oliver, N.: Influence of personality on satisfaction with mobile phone services. ACM Transact. Comput. Hum. Inter. (TOCHI) 20(2), 10 (2013)Google Scholar
  18. 18.
    de Oliveira, R., et al.: Towards a psychographic user model from mobile phone usage. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 2191–2196. ACM (2011)Google Scholar
  19. 19.
    Orji, R., Nacke, L.E., Di Marco, C.: Towards personality-driven persuasive health games and gamified systems. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 1015–1027. ACM (2017)Google Scholar
  20. 20.
    Park, S., Matic, A., Garg, K., Oliver, N.: When simpler data does not imply less information: a study of user profiling scenarios with constrained view of mobile HTTP(s) traffic. ACM Transact. Web (TWEB) 12(2), 9 (2018)Google Scholar
  21. 21.
    Raber, F., Krueger, A.: Towards understanding the influence of personality on mobile app permission settings. In: Bernhaupt, R., Dalvi, G., Joshi, A., K. Balkrishan, D., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10516, pp. 62–82. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68059-0_4CrossRefGoogle Scholar
  22. 22.
    Ryan, R.M., Bernstein, J.H., Brown, K.W.: Weekends, work, and well-being: psychological need satisfactions and day of the week effects on mood, vitality, and physical symptoms. J. Soc. Clin. Psychol. 29(1), 95–122 (2010)CrossRefGoogle Scholar
  23. 23.
    Staddon, J., Huffaker, D., Brown, L., Sedley, A.: Are privacy concerns a turn-off?: engagement and privacy in social networks. In: Proceedings of the Eighth Symposium on Usable Privacy and Security, p. 10. ACM (2012)Google Scholar
  24. 24.
    Staiano, J., Lepri, B., Aharony, N., Pianesi, F., Sebe, N., Pentland, A.: Friends don’t lie: inferring personality traits from social network structure. In: Proceedings of the 2012 ACM conference on ubiquitous computing, pp. 321–330. ACM (2012)Google Scholar
  25. 25.
    Tene, O., Polonetsky, J.: Big data for all: privacy and user control in the age of analytics. Nw. J. Tech. Intell. Prop. 11, xxvii (2012)Google Scholar
  26. 26.
    Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Transact. Affect. Comput. 5(3), 273–291 (2014)CrossRefGoogle Scholar
  27. 27.
    Wang, W., et al.: Sensing behavioral change over time: Using within-person variability features from mobile sensing to predict personality traits. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 2(3), 141 (2018)Google Scholar
  28. 28.
    Xu, R., Frey, R.M., Fleisch, E., Ilic, A.: Understanding the impact of personality traits on mobile app adoption-insights from a large-scale field study. Comput. Hum. Behav. 62, 244–256 (2016)CrossRefGoogle Scholar
  29. 29.
    Yee, N., et al.: Introverted elves & conscientious gnomes: the expression of personality in world of warcraft. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems pp. 753–762. ACM (2011)Google Scholar
  30. 30.
    Zuzanek, J., Smale, B.J.A.: Life-Cycle and across-the-week allocation of time to daily activities. In: Pentland, W.E., Harvey, A.S., Lawton, M.P., McColl, M.A. (eds.) Time Use Research in the Social Sciences. Springer, Boston (2002).  https://doi.org/10.1007/0-306-47155-8_6CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Telefonica AlphaBarcelonaSpain
  2. 2.Imperial CollegeLondonUK

Personalised recommendations