Skip to main content

Visual Methods for the Design of Shape-Changing Interfaces

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11748)

Abstract

Shape-changing interfaces use physical change in shape as input and/or output. As the field matures, it will move from technology-driven design toward more formal processes. However, this is challenging: end-users are not aware of the capabilities of shape-change, devices are difficult to demonstrate, and presenting single systems can ‘trap’ user-thinking into particular forms. It is crucial to ensure this technology is developed with requirements in mind to ensure successful end-user experiences. To address this challenge, we developed and tested (n = 50) an approach that combines low-fidelity white-box prototypes and high-fidelity video footage with end-user diagram and scenario sketching to design context dependent devices. We analysed the outputs of our test process and identified themes in device design requirements, and from this constructed a shape-change stack model to support practitioners in developing, classifying, and synthesising end-user requirements for this novel technology.

Keywords

  • Shape-changing interfaces
  • Sketching
  • Visual methods

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-29387-1_19
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-29387-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   171.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Atkinson, D., et al.: Tactile perceptions of digital textiles: a design research approach. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1669–1678. ACM (2013)

    Google Scholar 

  2. Buxton, B.: Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  3. Coelho, M., Zigelbaum, J.: Shape-changing interfaces. Pers. Ubiquit. Comput. 15(2), 161–173 (2011). https://doi.org/10.1007/s00779-010-0311-y

    CrossRef  Google Scholar 

  4. Dand, D., Hemsley, R.: Obake: interactions on a 2.5D elastic display. In: Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 109–110. ACM (2013). https://doi.org/10.1145/2508468.2514734

  5. Everitt, A., Alexander, J.: PolySurface: a design approach for rapid prototyping of shape-changing displays using semi-solid surfaces. In: Proceedings of the 2017 Conference on Designing Interactive Systems, pp. 1283–1294. ACM (2017). https://doi.org/10.1145/3064663.3064677

  6. Everitt, A., Taher, F., Alexander, J.: ShapeCanvas: an exploration of shape-changing content generation by members of the public. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2778–2782. ACM (2016). https://doi.org/10.1145/2858036.2858316

  7. Fish, J., Scrivener, S.: Amplifying the mind’s eye: sketching and visual cognition. Leonardo 23(1), 117–126 (1990)

    CrossRef  Google Scholar 

  8. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H.: Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 519–528. ACM (2012)

    Google Scholar 

  9. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H.: inFORM: dynamic physical affordances and constraints through shape and object actuation. In: Uist, vol. 13, pp. 417–426 (2013). https://doi.org/10.1145/2501988.2502032

  10. Frommer, D.: These are the 10 most popular mobile apps in America. Blog, August 2017. http://www.recode.net/2017/8/24/16197218/top-10-mobile-apps-2017-comscore-chart-facebook-google. Accessed 28 Aug 2017

  11. Giaccardi, E., Karana, E.: Foundations of materials experience: an approach for HCI. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2447–2456. ACM (2015). https://doi.org/10.1145/2702123.2702337

  12. Goldschmidt, G.: The dialectics of sketching. Creat. Res. J. 4(2), 123–143 (1991). https://doi.org/10.1080/10400419109534381

    MathSciNet  CrossRef  Google Scholar 

  13. Goldschmidt, G.: Manual sketching: why is it still relevant? In: Ammon, S., Capdevila-Werning, R. (eds.) The Active Image. PET, vol. 28, pp. 77–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56466-1_4

    CrossRef  Google Scholar 

  14. Gomes, A., Priyadarshana, L., Carrascal, J.P., Vertegaal, R.: WhammyPhone: exploring tangible audio manipulation using bend input on a flexible smartphone. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 159–161. ACM (2016). https://doi.org/10.1145/2984751.2985742

  15. Gong, J., Li, L., Vogel, D., Yang, X.D.: Cito: an actuated smartwatch for extended interactions. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5331–5345. ACM (2017)

    Google Scholar 

  16. Goulthorpe, M., Burry, M., Dunlop, G.: Aegis hyposurface: the bordering of university and practice. In: Proceedings of ACADIA, pp. 344–349. Association for Computer-Aided Design in Architecture (2001)

    Google Scholar 

  17. Grönvall, E., Kinch, S., Petersen, M.G., Rasmussen, M.K.: Causing commotion with a shape-changing bench: experiencing shape-changing interfaces in use. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2559–2568. ACM (2014). https://doi.org/10.1145/2556288.2557360

  18. Haesen, M., et al.: Using storyboards to integrate models and informal design knowledge. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven Development of Advanced User Interfaces. SCI, vol. 340, pp. 87–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14562-9_5

    CrossRef  Google Scholar 

  19. Haesen, M., Luyten, K., Coninx, K.: Get your requirements straight: storyboarding revisited. In: Gross, T., et al. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 546–549. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03658-3_59

    CrossRef  Google Scholar 

  20. Hardy, J., Weichel, C., Taher, F., Vidler, J., Alexander, J.: ShapeClip: towards rapid prototyping with shape-changing displays for designers. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 19–28. ACM (2015). https://doi.org/10.1145/2702123.2702599

  21. Hashimoto, S., Suzuki, R., Kamiyama, Y., Inami, M., Igarashi, T.: LightCloth: senseable illuminating optical fiber cloth for creating interactive surfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 603–606. ACM (2013). https://doi.org/10.1145/2470654.2470739

  22. Haughney, E.: Using comics to communicate qualitative user research findings. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems, pp. 2209–2212. ACM (2008). https://doi.org/10.1145/1358628.1358653

  23. Ishii, H., Lakatos, D., Bonanni, L., Labrune, J.B.: Radical atoms: beyond tangible bits, toward transformable materials. Interactions 19(1), 38–51 (2012)

    CrossRef  Google Scholar 

  24. Kodama, S.: Dynamic ferrofluid sculpture: organic shape-changing art forms. Commun. ACM 51(6), 79–81 (2008)

    CrossRef  Google Scholar 

  25. Kostakos, V.: The big hole in HCI research. Interactions 22(2), 48–51 (2015)

    CrossRef  Google Scholar 

  26. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. Wiley, Hoboken (1998)

    Google Scholar 

  27. Kwak, M., Hornbæk, K., Markopoulos, P., Bruns Alonso, M.: The design space of shape-changing interfaces: a repertory grid study. In: Proceedings of the 2014 Conference on Designing Interactive Systems, pp. 181–190. ACM (2014). https://doi.org/10.1145/2598510.2598573

  28. Landay, J.A., Myers, B.A.: Sketching interfaces: toward more human interface design. Computer 34(3), 56–64 (2001). https://doi.org/10.1109/2.910894

    CrossRef  Google Scholar 

  29. Leithinger, D., Follmer, S., Olwal, A., Ishii, H.: Physical telepresence: shape capture and display for embodied, computer-mediated remote collaboration. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 461–470. ACM (2014). https://doi.org/10.1145/2642918.2647377

  30. Lewis, M.M., Coles-Kemp, L.: Who says personas can’t dance? The use of comic strips to design information security personas. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 2485–2490. ACM (2014)

    Google Scholar 

  31. Lindley, J., Coulton, P., Sturdee, M.: Implications for adoption. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 265–277. ACM (2017). https://doi.org/10.1145/3025453.3025742

  32. Linehan, C., et al.: Alternate endings: using fiction to explore design futures. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 45–48. ACM (2014). https://doi.org/10.1145/2559206.2560472

  33. Lucero, A.: Using affinity diagrams to evaluate interactive prototypes. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9297, pp. 231–248. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22668-2_19

    CrossRef  Google Scholar 

  34. Mackay, W.E., Ratzer, A.V., Janecek, P.: Video artifacts for design: bridging the gap between abstraction and detail. In: Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 72–82. ACM (2000). https://doi.org/10.1145/347642.347666

  35. Malafouris, L.: The cognitive basis of material engagement: where brain, body and culture conflate. In: Rethinking Materiality: The Engagement of Mind with the Material World, pp. 53–61. McDonald Institute Monographs, Cambridge (2004)

    Google Scholar 

  36. Matoba, Y., Sato, T., Takahashi, N., Koike, H.: ClaytricSurface: an interactive surface with dynamic softness control capability. In: ACM SIGGRAPH 2012 Emerging Technologies, p. 6. ACM (2012). https://doi.org/10.1145/2343456.2343462

  37. Muller, M.J.: Participatory design: the third space in HCI. In: Human-Computer Interaction: Development Process, vol. 4235, pp. 165–185 (2003)

    Google Scholar 

  38. Nelson, J., Buisine, S., Aoussat, A.: Anticipating the use of future things: towards a framework for prospective use analysis in innovation design projects. Appl. Ergon. 44(6), 948–956 (2013). https://doi.org/10.1016/j.apergo.2013.01.002

    CrossRef  Google Scholar 

  39. Park, Y.W., Park, J., Nam, T.J.: The trial of bendi in a coffeehouse: use of a shape-changing device for a tactile-visual phone conversation. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2181–2190. ACM (2015). https://doi.org/10.1145/2702123.2702326

  40. Pedersen, E.W., Subramanian, S., Hornbæk, K.: Is my phone alive? A large-scale study of shape change in handheld devices using videos. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2579–2588. ACM (2014). https://doi.org/10.1145/2556288.2557018

  41. Petrelli, D., Soranzo, A., Ciolfi, L., Reidy, J.: Exploring the aesthetics of tangible interaction: experiments on the perception of hybrid objects. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 100–108. ACM (2016). https://doi.org/10.1145/2839462.2839478

  42. Poupyrev, I., Nashida, T., Okabe, M.: Actuation and tangible user interfaces: the Vaucanson duck, robots, and shape displays. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 205–212. ACM (2007)

    Google Scholar 

  43. Ramakers, R., Schöning, J., Luyten, K.: Paddle: highly deformable mobile devices with physical controls. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2569–2578. ACM (2014)

    Google Scholar 

  44. Rasmussen, M.K., Pedersen, E.W., Petersen, M.G., Hornbæk, K.: Shape-changing interfaces: a review of the design space and open research questions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 735–744. ACM (2012). https://doi.org/10.1145/2207676.2207781

  45. Rasmussen, M.K., Troiano, G.M., Petersen, M.G., Simonsen, J.G., Hornbæk, K.: Sketching shape-changing interfaces: exploring vocabulary, metaphors, use, and affordances. In: CHI, pp. 2740–2751 (2016)

    Google Scholar 

  46. Read, J.C., Fitton, D., Horton, M.: Theatre, playdoh and comic strips: designing organic user interfaces with young adolescent and teenage participants. Interact. Comput. 25(2), 183–198 (2013). https://doi.org/10.1093/iwc/iws016

    CrossRef  Google Scholar 

  47. Roudaut, A., Karnik, A., Löchtefeld, M., Subramanian, S.: Morphees: toward high shape resolution in self-actuated flexible mobile devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 593–602. ACM (2013)

    Google Scholar 

  48. Rudd, J., Stern, K., Isensee, S.: Low vs. high-fidelity prototyping debate. Interactions 3(1), 76–85 (1996). https://doi.org/10.1145/223500.223514

    CrossRef  Google Scholar 

  49. Sahoo, D.R., Hornbæk, K., Subramanian, S.: TableHop: an actuated fabric display using transparent electrodes. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3767–3780. ACM (2016)

    Google Scholar 

  50. Schmid, M., Rümelin, S., Richter, H.: Empowering materiality: inspiring the design of tangible interactions. In: Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction, pp. 91–98. ACM (2013)

    Google Scholar 

  51. Sefelin, R., Tscheligi, M., Giller, V.: Paper prototyping-what is it good for? A comparison of paper-and computer-based low-fidelity prototyping. In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, pp. 778–779. ACM (2003). https://doi.org/10.1145/765891.765986

  52. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley, New York (1997)

    MATH  Google Scholar 

  53. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Grounded Theory Procedures and Techniques. Sage Publications Inc., Thousand Oaks (1990)

    Google Scholar 

  54. Strohmeier, P., Burstyn, J., Carrascal, J.P., Levesque, V., Vertegaal, R.: ReFlex: a flexible smartphone with active haptic feedback for bend input. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 185–192. ACM (2016)

    Google Scholar 

  55. Sturdee, M., Alexander, J.: Analysis and classification of shape-changing interfaces for design and application-based research. ACM Comput. Surv. (CSUR) 51(1), 2 (2018). https://doi.org/10.1145/3143559

    CrossRef  Google Scholar 

  56. Sturdee, M., Hardy, J., Dunn, N., Alexander, J.: A public ideation of shape-changing applications. In: Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces, pp. 219–228. ACM (2015). https://doi.org/10.1145/2817721.2817734

  57. Sutherland, M., Maiden, N.: Storyboarding requirements. IEEE Softw. 27(6), 9–11 (2010). https://doi.org/10.1109/MS.2010.147

    CrossRef  Google Scholar 

  58. Taher, F., Jansen, Y., Woodruff, J., Hardy, J., Hornbæk, K., Alexander, J.: Investigating the use of a dynamic physical bar chart for data exploration and presentation. IEEE Trans. Vis. Comput. Graph. 23(1), 451–460 (2017). https://doi.org/10.1109/TVCG.2016.2598498

    CrossRef  Google Scholar 

  59. Wang, J.Y., Ramberg, R., Kuoppala, H.: User participatory sketching: a complementary approach to gather user requirements. In: Proceedings of APCHI 2012: The 10th Asia Pacific Conference on Computer Human Interaction, pp. 481–490 (2012)

    Google Scholar 

  60. Williams, A.M., Alspaugh, T.A.: Articulating software requirements comic book style. In: 2008 Third International Workshop on Multimedia and Enjoyable Requirements Engineering-Beyond Mere Descriptions and with More Fun and Games, MERE 2008, pp. 4–8. IEEE (2008). https://doi.org/10.1109/MERE.2008.3

  61. Winther, M., Vallgårda, A.: A basic form language for shape-changing interfaces. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 193–201. ACM (2016). https://doi.org/10.1145/2839462.2839496

  62. Ylirisku, S.P., Buur, J.: Designing with Video: Focusing the User-Centred Design Process. Springer, London (2007). https://doi.org/10.1007/978-1-84628-961-3

    CrossRef  Google Scholar 

  63. Zhang Kennedy, L., Chiasson, S., Biddle, R.: The role of instructional design in persuasion: a comics approach for improving cybersecurity. Int. J. Hum. Comput. Interact. 32(3), 215–257 (2016). https://doi.org/10.1080/10447318.2016.1136177

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Sturdee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sturdee, M., Everitt, A., Lindley, J., Coulton, P., Alexander, J. (2019). Visual Methods for the Design of Shape-Changing Interfaces. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds) Human-Computer Interaction – INTERACT 2019. INTERACT 2019. Lecture Notes in Computer Science(), vol 11748. Springer, Cham. https://doi.org/10.1007/978-3-030-29387-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29387-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29386-4

  • Online ISBN: 978-3-030-29387-1

  • eBook Packages: Computer ScienceComputer Science (R0)