Albaugh, Q., Sevenans, J., Loewen, P. J., & Soroka, S. (2013). The automated coding of policy agendas: A dictionary-based approach. In Proceedings of the 6th comparative agendas project (CAP), Antwerp.
Google Scholar
Arendt, F., & Karadas, N. (2017). Content analysis of mediated associations: An automated text-analytic approach. Communication Methods and Measures, 11(2), 1–16.
CrossRef
Google Scholar
Baden, C. & Tenenboim-Weinblatt, K. (2018). The search for common ground in conflict news research: Comparing the coverage of six current conflicts in domestic and international media over time. Media, War and Conflict, 11(1), 22–45.
CrossRef
Google Scholar
Bagozzi, B. E. & Berliner, D. (2018). The politics of scrutiny in human rights monitoring: Evidence from structural topic models of US state department human rights reports. Political Science Research and Methods, 6(4), 661–677. http://www.journals.cambridge.org/abstract{_}S2049847016000443.
CrossRef
Google Scholar
Bastos, M. & Mercea, D. (2018). Parametrizing Brexit: mapping Twitter political space to parliamentary constituencies. Information, Communication & Society, 21(7), 921–939.
CrossRef
Google Scholar
Ben-David, A. & Matamoros-Fernández, A. (2016). Hate speech and covert discrimination on social media: Monitoring the Facebook pages of extreme-right political parties in Spain. International Journal of Communication, 10, 1167–1193.
Google Scholar
Benoit, K., Nulty, P., Obeng, A., Wang, H., Lauderdale, B., & Lowe, W. (2018). Quanteda Package. https://cran.r-project.org/web/packages/quanteda/quanteda.pdf.
Google Scholar
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. http://ci.nii.ac.jp/naid/110009545970/
Google Scholar
Boecking, B., Hall, M., & Schneider, J. (2015). Event prediction with learning algorithms—A study of events surrounding the Egyptian revolution of 2011 on the basis of micro blog data. Policy and Internet, 7(2), 159–184.
CrossRef
Google Scholar
Bonilla, T. & Grimmer, J. (2013, December). Elevated threat levels and decreased expectations: How democracy handles terrorist threats. Poetics, 41(6), 650–669.
CrossRef
Google Scholar
Bosc, T., Cabrio, E., & Villata, S. (2016). Tweeties squabbling : Positive and negative results in applying argument mining on social media. In Computational Models of Argument (pp. 21–32).
Google Scholar
Boumans, J. W. & Trilling, D. (2016). Taking stock of the toolkit. Digital Journalism, 4(1), 8–23.
CrossRef
Google Scholar
Bradley, M. M. & Lang, P. J. (1999). Affective norms for English words ( ANEW ): Instruction manual and affective ratings. Technical Report C-1, the Center of Research in Psychophysiology, 30(1), 25–36.
Google Scholar
Brintzenhoff, W. (2011). Automated language processing : Exploring the relationship of social media and conflict in a comparative analysis of Arabic social media and conflict events reported in news media. In Proceedings of the International Studies Association International Conference, Montréal (pp. 1–13).
Google Scholar
Burden, B. C. & Sanberg, J. N. (2003). Budget rhetoric in presidential campaigns from 1952 to 2000. Political Behavior, 25(2), 97–118.
CrossRef
Google Scholar
Burnap, P. & Williams, M. L. (2015). Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making. Policy and Internet, 7(2), 223–242.
CrossRef
Google Scholar
Burscher, B., Odijk, D., Vliegenthart, R., Rijke, M. de, & Vreese, C. H. de. (2014). Teaching the computer to code frames in news: Comparing two supervised machine learning approaches to frame analysis. Communication Methods and Measures, 8(3), 190–206.
CrossRef
Google Scholar
Burscher, B., Vliegenthart, R., & De Vreese, C. H. (2015). Using supervised machine learning to code policy issues: Can classifiers generalize across contexts? The ANNALS of the American Academy of Political and Social Science, 659(1), 122–131. http://ann.sagepub.com/content/659/1/122.abstract?rss=1.
CrossRef
Google Scholar
Chang, J., Gerrish, S., Wang, C., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Advances in Neural Information Processing Systems 22, 288–296. http://www.umiacs.umd.edu/{~}jbg/docs/nips2009-rtl.pdf
Google Scholar
Cohen, K., Johansson, F., Kaati, L., & Mork, J. C. (2014). Detecting linguistic markers for radical violence in social media. Terrorism and Political Violence, 26(1), 246–256.
CrossRef
Google Scholar
Denny, M. J. & Spirling, A. (2018). Text preprocessing for unsupervised learning: Why it matters, when it misleads, and what to do about it. Political Analysis, 26, 168–189. https://www.ssrn.com/abstract=2849145.
CrossRef
Google Scholar
DiMaggio, P. (2015). Adapting computational text analysis to social science (and vice versa). Big Data & Society, 2(2), 1–5.
CrossRef
Google Scholar
Dowell, N. M., Windsor, L. C., & Graesser, A. C. (2015). Computational linguistics analysis of leaders during crises in authoritarian regimes. Dynamics of Asymmetric Conflict, 9(01–03), 1–12. http://www.tandfonline.com/doi/abs/10.1080/17467586.2015.1038286
Google Scholar
Fawcett, P., Jensen, M. J., Ransan-Cooper, H., & Duus, S. (2018). Explaining the “ebb and flow” of the problem stream: Frame conflicts over the future of coal seam gas (“fracking”) in Australia. Journal of Public Policy, 1–21.
Google Scholar
González-Bailón, S. & Paltoglou, G. (2015). Signals of public opinion in online communication: A comparison of methods and data sources. The ANNALS of the American Academy of Political and Social Science, 659(1), 95–107. http://ann.sagepub.com/content/659/1/95.abstract?rss=1.
CrossRef
Google Scholar
Greene, D., O’Callaghan, D., & Cunningham, P. (2014). How many topics? Stability analysis for topic models. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8724 LNAI(PART 1), 498–513.
Google Scholar
Greene, K. T., Park, B., & Colaresi, M. (2018). Machine learning human rights and wrongs: How the successes and failures of supervised learning algorithms can inform the Debate about information effects. Political Analysis, Online First. https://doi.org/10.1017/pan.2018.11
CrossRef
Google Scholar
Grimmer, J. & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297.
CrossRef
Google Scholar
Hart, R. P. (2000). Diction 5.0 User’s Manual. London: Scolari Software, Sage Press.
Google Scholar
Hart, R. P. & Lind, C. J. (2011). The rhetoric of Islamic activism: A DICTION study. Dynamics of Asymmetric Conflict: Pathways toward Terrorism and Genocide, 4 (2), 113–125.
CrossRef
Google Scholar
Holtzman, N. S., Schott, J. P., Jones, M. N., Balota, D. A., & Yarkoni, T. (2011). Exploring media bias with semantic analysis tools: Validation of the contrast analysis of semantic similarity (CASS). Behavior Research Methods, 43(1), 193–200.
CrossRef
Google Scholar
Holtzman, N. S., Kwong, S., & Baird, K. L. (2015). Exploring political ideologies of senators with semantic analysis tools: Further validation of CASS. Journal of Language and Social Psychology, 34(2), 200–212.
CrossRef
Google Scholar
Jacobi, C., Atteveldt, W. van, & Welbers, K. (2016 Jan). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism, 4(1), 89–106. http://www.tandfonline.com/doi/full/10.1080/21670811.2015.1093271.
CrossRef
Google Scholar
Kananovich, V. (2018). Framing the Taxation-Democratization link: An automated content analysis of cross-national newspaper data. International Journal of Press/Politics, 23(2), 247–267.
CrossRef
Google Scholar
Kellstedt, P. M. (2000). Media framing and the dynamics of racial policy preferences. American Journal of Political Science, 44(2), 245. http://www.jstor.org/stable/2669308?origin=crossref.
CrossRef
Google Scholar
Laver, M. & Garry, J. (2000). Estimating policy positions from political texts. American Journal of Political Science, 44(3), 619–634.
CrossRef
Google Scholar
Lee, M. & Mimno, D. (2014). Low-dimensional embeddings for interpretable anchor-based topic inference. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1319–1328. http://arxiv.org/abs/1711.06826
Loughran, T. & McDonald, B. (2010). When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks. Journal of Finance, 66(1), 35–65. http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2010.01625.x/full.
CrossRef
Google Scholar
Lucas, C., Nielsen, R. A., Roberts, M. E., Stewart, B. M., Storer, A., & Tingley, D. (2015). Computer-assisted text analysis for comparative politics. Political Analysis, 23(02), 254–277.
CrossRef
Google Scholar
Macnair, L. & Frank, R. (2018a). Changes and stabilities in the language of Islamic state magazines: A sentiment analysis. Dynamics of Asymmetric Conflict: Pathways toward Terrorism and Genocide, 11(2), 109–120. http://doi.org/10.1080/17467586.2018.1470660
CrossRef
Google Scholar
Macnair, L. & Frank, R. (2018b). The mediums and the messages: Exploring the language of Islamic State media through sentiment analysis. Critical Studies on Terrorism, 00(00), 1–20. https://doi.org/10.1080/17539153.2018.1447226
Google Scholar
Maerz, S. F. (2019). Simulating pluralism: The language of democracy in hegemonic authoritarianism. Open Access in Political Research Exchange. https://doi.org/10.1080/2474736X.2019.1605834.
CrossRef
Google Scholar
Maerz, S. F. & Schneider, C. Q. (2019). Comparing public communication in democracies and autocracies: automated text analyses of speeches by heads of government. Quality and Quantity, Online First. http://link.springer.com/article/10.1007/s11135-019-00885-7.
Medzihorsky, J., Popovic, M., & Jenne, E. K. (2017). Rhetoric of civil conflict management: United Nations security council debates over the Syrian civil war. Research and Politics, 4(2), 1–10. http://journals.sagepub.com/doi/10.1177/2053168017702982.
CrossRef
Google Scholar
Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the ACM, 38(11), 39–41.
CrossRef
Google Scholar
Miller, I. M. (2013). Rebellion, crime and violence in Qing China, 1722-1911: A topic modeling approach. Poetics, 41(6), 626–649. http://dx.doi.org/10.1016/j.poetic.2013.06.005.
CrossRef
Google Scholar
Mishler, A., Hefright, B., Paletz, S. B. F., Golonka, E., & Ford, A. (2015). Using structural topic modeling to study public opinion and detect events. ConferencePaper, International Conference on Human-Computer Interaction. https://link.springer.com/chapter/10.1007/978-3-319-21380-4{_}108
Google Scholar
Montiel, C. J., Salvador, A. M. O., See, D. C., & De Leon, M. M. (2014). Nationalism in local media during international conflict: Text mining domestic news reports of the China-Philippines Maritime Dispute. Journal of Language and Social Psychology, 33(5), 445–464.
CrossRef
Google Scholar
Mueller, H. & Rauh, C. (2018). Reading between the lines: Prediction of political violence using newspaper text. American Political Science Review, 112(2), 358–375.
CrossRef
Google Scholar
Nelson, L. K. (2017). Computational grounded theory: A methodological framework. Sociological Methods and Research. https://doi.org/10.1177%2F0049124117729703.
O’Halloran, K. L., Tan, S., Wignell, P., Bateman, J. A., Pham, D. S., Grossman, M., et al. (2019). Interpreting text and image relations in violent extremist discourse: A mixed methods approach for big data analytics. Terrorism and Political Violence, 31(3), 454–474.
CrossRef
Google Scholar
Payson Conflict Study Group. (2001). A glossary on violent conflict terms and concepts used in conflict prevention, mitigation, and resolution in the context of disaster relief and sustainable development. https://reliefweb.int/sites/reliefweb.int/files/resources/6C8E6652532FE542C12575DD00444F2D-USAID_may01.pdf
Google Scholar
Pennebaker, J. W. (2011). Using computer analyses to identify language style and aggressive intent: The secret life of function words. Dynamics of Asymmetric Conflict: Pathways toward Terrorism and Genocide, 4(2), 92–102.
CrossRef
Google Scholar
Pennebaker, J. W., Boyd, R. L., & Francis, M. E. (2001). Linguistic Inquiry and Word Count (LIWC). Austin: Pennebaker Conglomerates. www.LIWC.net
Google Scholar
Proksch, S.-O., Lowe, W., Wäckerle, J., & Soroka, S. (2019). Multilingual sentiment analysis: A new approach to measuring conflict in legislative speeches. Legislative Studies Quarterly, 44(1), 97–131. http://doi.wiley.com/10.1111/lsq.12218
CrossRef
Google Scholar
Puschmann, C. (2018). Inhaltsanalyse mit R. http://inhaltsanalyse-mit-r.de
Google Scholar
Python. (2018). Python software foundation. Python language reference. http://www.python.org/
R. (2018). The R Core Team: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.r-project.org
Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., et al. (2014). Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4), 1064–1082.
CrossRef
Google Scholar
Roberts, M. E., Stewart, B. M., & Airoldi, E. M. (2016). A model of text for experimentation in the social sciences. Journal of the American Statistical Association, 111(515), 988–1003.http://dx.doi.org/10.1080/01621459.2016.1141684
CrossRef
Google Scholar
Roberts, M. E., Stewart, B. M., & Tingley, D. (2018). STM: R package for structural topic models. Journal of Statistical Software. http://arxiv.org/abs/1709.04553
Scharkow, M. (2013). Thematic content analysis using supervised machine learning: An empirical evaluation using German online news. Quality and Quantity, 47(2), 761–773.
CrossRef
Google Scholar
Schwemmer, C. (2018). Stminsights: A shiny application for inspecting structural topic models [Software-Handbuch]. https://github.com/cschwem2er/stminsights (R package version 0.3.0).
Stewart, B. M. & Zhukov, Y. M. (2009). Use of force and civil–military relations in Russia: An automated content analysis. Small Wars and Insurgencies, 20(2), 319–343.
CrossRef
Google Scholar
Stone, P., Dunphy, D., Smith, M., & Ogilvie, D. (1966). The general inquirer: A computer approach to content analysis. Cambridge: MIT Press.
Google Scholar
Tausczik, Y. R. & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 24–54.
CrossRef
Google Scholar
Terman, R. (2017). Islamophobia and media portrayals of Muslim Women: A computational text analysis of US news coverage. International Studies Quarterly, 61(3), 489–502.
CrossRef
Google Scholar
Tingley, D. (2017). Rising power on the mind. International Organization, 71(S1), 165–188.
CrossRef
Google Scholar
Törnberg, A. & Törnberg, P. (2016). Muslims in social media discourse: Combining topic modeling and critical discourse analysis. Discourse, Context and Media, 13, 132–142. http://dx.doi.org/10.1016/j.dcm.2016.04.003
CrossRef
Google Scholar
Trilling, D. (2018). Doing computational social science with Python: An introduction. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2737682
Google Scholar
van Atteveldt, W., Kleinnijenhuis, J., Ruigrok, N., & Schlobach, S. (2008). Good news or bad news? Conducting sentiment analysis on Dutch text to distinguish between positive and negative relations. Journal of Information Technology and Politics, 5(1), 73–94.
CrossRef
Google Scholar
Young, L. & Soroka, S. (2012). Affective news: The automated coding of sentiment in political texts. Political Communication, 29(2), 205–231.
CrossRef
Google Scholar
Zamith, R. & Lewis, S. C. (2015). Content analysis and the algorithmic coder: What computational social science means for traditional modes of media analysis. The ANNALS of the American Academy of Political and Social Science, 659(1), 307–318. http://ann.sagepub.com/content/659/1/307.abstract?rss=1
CrossRef
Google Scholar