Skip to main content

Topological Phase Transitions

  • Chapter
  • First Online:
Phase Transition Dynamics
  • 1119 Accesses

Abstract

This chapter aims to develop a systematic theory of topological phase transitions (TPTs) and explores a few typical examples, including (1) quantum phase transitions (QPTs), (2) galactic spiral structures, (3) electromagnetic eruptions on solar surface, (4) boundary-layer separation of fluid flows, and (5) interior separation of fluid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Dirichlet boundary condition for T amounts to saying that there is heat exchange of the system with outside. Hence there is no contradiction between the non-blow-up condition and the blow-up theorem 9.4.2, where the Neumann boundary condition for T is used.

  2. 2.

    We remark here that by the above inequality and the Hölder inequality, we have

    $$\displaystyle \begin{aligned}\| \nabla u\|{}_{L^p} \ge \frac{c}{|\varOmega|{}^{(N^\ast-q)/N^\ast q}} \| u\|{}_{L^q} \quad \text{ for } n> p, N^\ast= \frac{np}{n-p}.\end{aligned}$$

References

  • Foias, C., O. Manley, and R. Temam (1987). Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. 11(8), 939–967.

    Article  MathSciNet  Google Scholar 

  • Lin, C. and F. Shu (1964). On the spiral structure of disk galaxies. Astrophysical Journal 140, 646–655.

    Article  MathSciNet  Google Scholar 

  • Liu, R., T. Ma, S. Wang, and J. Yang (2017b). Topological Phase Transition V: Interior Separation and Cyclone Formation Theory. Hal preprint: hal-01673496.

    Google Scholar 

  • Luo, H., Q. Wang, and T. Ma (2015b). A predictable condition for boundary layer separation of 2-d incompressible fluid flows. Nonlinear Anal. Real World Appl. 22, 336–341.

    Article  MathSciNet  Google Scholar 

  • Ma, T. (2011). Theory and Methods of Partial Differential Equations (in Chinese). Beijing, Science Press.

    Google Scholar 

  • Ma, T., D. Li, R. Liu, and J. Yang (2016). Mathematical theory for quantum phase transitions. https://arxiv.org/pdf/1610.06988.pdf\/.

    Google Scholar 

  • Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.

    Book  Google Scholar 

  • Ma, T. and S. Wang (2014a). Astrophysical dynamics and cosmology. Journal of Mathematical Study 47:4, 305–378.

    Article  MathSciNet  Google Scholar 

  • Ma, T. and S. Wang (2014b). Gravitational field equations and theory of dark matter and dark energy. Discrete and Continuous Dynamical Systems, Ser. A 34:2, 335–366; see also arXiv:1206.5078v2.

    Article  MathSciNet  Google Scholar 

  • Ma, T. and S. Wang (2015a). Mathematical Principles of Theoretical Physics. Science Press, 524 pages.

    Google Scholar 

  • Ma, T. and S. Wang (2017c). Radiations and potentials of four fundamental interactions. Hal preprint: hal-01616874.

    Google Scholar 

  • Ma, T. and S. Wang (2017d). Statistical theory of heat. Hal preprint: hal-01578634.

    Google Scholar 

  • Ma, T. and S. Wang (2017e). Topological Phase Transitions I: Quantum Phase Transitions. Hal preprint: hal-01651908.

    Google Scholar 

  • Ma, T. and S. Wang (2017f). Topological Phase Transitions II: Solar Surface Eruptions and Sunspots. Hal preprint: hal-01672381.

    Google Scholar 

  • Ma, T. and S. Wang (2017g). Topological Phase Transitions II: Spiral Structure of Galaxies. Hal preprint: hal-01671178.

    Google Scholar 

  • Ma, T. and S. Wang (2017h). Topological Phase Transitions IV: Dynamic Theory of Boundary-Layer Separations. Hal preprint: hal-01672759.

    Google Scholar 

  • Ma, T. and S. Wang (2019). Quantum Mechanism of Condensation and High Tc Superconductivity. International Journal of Theoretical Physics B 33, 1950139 (34 pages); see also hal--01613117 (2017).

    Google Scholar 

  • Oertel, H. (2001). Prandtl-Führer durch die Strömungslehre. Vieweg+Teubner Verlag.

    Google Scholar 

  • Prandtl, L. (1904). In Verhandlungen des dritten internationalen Mathematiker-Kongresses. Heidelberg, Leipeizig, pp. 484–491.

    Google Scholar 

  • Rubin, V. and J. W. K. Ford (1970). Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophysical Journal 159, 379–404.

    Article  Google Scholar 

  • Vojta, M. (2003). Quantum phase transitions. Reports on Progress in Physics 66(12), 2069.

    Article  MathSciNet  Google Scholar 

  • Wang, Q., H. Luo, and T. Ma (2015b). Boundary layer separation of 2-d incompressible Dirichlet flows. Discrete Contin. Dyn. Syst. Ser. B 20, 675–682.

    Article  MathSciNet  Google Scholar 

  • Yang, J. and R. Liu (2016). A fluid dynamical model coupling heat with application to interior separations. https://arxiv.org/pdf/1606.07152.pdf\/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, T., Wang, S. (2019). Topological Phase Transitions. In: Phase Transition Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-29260-7_9

Download citation

Publish with us

Policies and ethics