Skip to main content

On the Generalization Capabilities of Sharp Minima in Case-Based Reasoning

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11680))

Included in the following conference series:

  • 937 Accesses

Abstract

In machine learning and numerical optimization, there has been an ongoing debate about properties of local optima and the impact of these properties on generalization. In this paper, we make a first attempt to address this question for case-based reasoning systems, more specifically for instance-based learning as it takes place in the retain phase. In so doing, we cast case learning as an optimization problem, develop a notion of local optima, propose a measure for the flatness or sharpness of these optima and empirically evaluate the relation between sharp minima and the generalization performance of the corresponding learned case base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Though learning can take place also in one of the other knowledge containers of a CBR system, e.g. when learning similarity measures or adaption knowledge.

  2. 2.

    There remains some sensitivity to the presentation order since in line 4 multiple cases c may reduce \(\mathbb E^{loo}_{\mathcal T}\) equally in which case one of those cases must be selected, e.g. randomly or by some convention.

  3. 3.

    A-Balance, B-BanknoteAuth, C-Cancer, D-Car, E-Contraceptive, F-Ecoli, G-Glass, H-Haberman, I-Hayes, J-Heart, K-Iris, L-MammogrMass, M-Monks, N-Pima, O-QualBankruptcy, P-TeachAssistEval, Q-TicTacToe, R-UserKnowledge, S-VertebralCol, T-Wine, U-Yeast.

References

  1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Google Scholar 

  2. Brighton, H., Mellish, C.: On the consistency of information filters for lazy learning algorithms. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 283–288. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48247-5_31

    Chapter  Google Scholar 

  3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967)

    Article  Google Scholar 

  4. Dinh, L., Pascanu, R., Bengio, S., Bengio, Y.: Sharp minima can generalize for deep nets. In: Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, pp. 1019–1028. JMLR.org (2017)

    Google Scholar 

  5. Gates, G.: The reduced nearest neighbor rule. IEEE Trans. Inf. Theory 18(3), 431–433 (1972)

    Article  Google Scholar 

  6. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3), 515–516 (1968)

    Article  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1–42 (1997)

    Article  Google Scholar 

  8. Keskar, N., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.: On large-batch training for deep learning: generalization gap and sharp minima. In: Proceedings of the 5th International Conference on Learning Representations, Toulon, France (2017)

    Google Scholar 

  9. Kibler, D., Aha, D.: Learning representative exemplars of concepts: an initial case study. In: Proceedings of the Fourth International Workshop on Machine Learning, pp. 24–30. Morgan Kaufmann (1987)

    Google Scholar 

  10. Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: dimensions and directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 196–207. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056333

    Chapter  Google Scholar 

  11. Leake, D., Wilson, M.: How many cases do you need? Assessing and predicting case-base coverage. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS (LNAI), vol. 6880, pp. 92–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23291-6_9

    Chapter  Google Scholar 

  12. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape of neural nets. In: Annual Conference on Neural Information Processing Systems 2018 (NeurIPS 2018), Montréal, Canada, pp. 6391–6401 (2018)

    Google Scholar 

  13. Lichman, M.: UCI Machine Learning Repository (2013). archive.ics.uci.edu/ml

  14. Lupiani, E., Craw, S., Massie, S., Juarez, J.M., Palma, J.T.: A multi-objective evolutionary algorithm fitness function for case-base maintenance. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS (LNAI), vol. 7969, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39056-2_16

    Chapter  Google Scholar 

  15. Skalak, D.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the 11th International Conference on Machine Learning, New Brunswick, NJ, USA, pp. 293–301 (1994)

    Google Scholar 

  16. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 329–342. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48508-2_24

    Chapter  Google Scholar 

  17. Smyth, B., McKenna, E.: Competence guided incremental footprint-based retrieval. Knowl.-Based Syst. 14(3–4), 155–161 (2001)

    Article  Google Scholar 

  18. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)

    Article  MathSciNet  Google Scholar 

  19. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000)

    Article  Google Scholar 

  20. Zhang, J.: Selecting typical instances in instance-based learning. In: Proceedings of the 9th International Workshop on Machine Learning, Aberdeen, UK, pp. 470–479 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabel, T., Godehardt, E. (2019). On the Generalization Capabilities of Sharp Minima in Case-Based Reasoning. In: Bach, K., Marling, C. (eds) Case-Based Reasoning Research and Development. ICCBR 2019. Lecture Notes in Computer Science(), vol 11680. Springer, Cham. https://doi.org/10.1007/978-3-030-29249-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29249-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29248-5

  • Online ISBN: 978-3-030-29249-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics