Advertisement

Do Not Interrupt Students’ Work: How Teacher Interactions Influence Team’s Problem-Solving Capabilities

  • Sergio CelisEmail author
  • Carlos Quiroz
  • Valentina Toro-Vidal
Chapter
  • 328 Downloads
Part of the Research in Mathematics Education book series (RME)

Abstract

We study how teacher interactions with student groups relate to team’s problem-solving capabilities in the teaching of mathematics in open-access institutions of higher education in Chile. We define a teacher interaction as the moment in which a teacher visits a group of student working on a problem-solving activity. The data is based on 25 videos of classroom teaching of 11 teachers. Through the analysis of about 700 interactions observed in videos, we described and measured items such as the number of students who talk during the interaction or whether the teacher interacts mostly with questions. We also created a variable we called depth of the solution, which indicates whether a team solved the problem and how far they went in further problem extensions. This measure was used as the dependent variable, regressed on multiple teachers’ interaction variables, and controlled by several teachers and team characteristics. We used the idea of scaffolding as a framework to analyze and discuss the data. We found evidence that the fewer teachers interrupt student groups, the further students go into the mathematics content of the problem-solving task.

Keywords

Scaffolding in problem solving Collaborative learning Open-access higher education 

Notes

Acknowledgement

This work was supported by Fondecyt Iniciación N°11160656. We also thank Dr. Lisa Darragh for providing comments and suggestions to this article.

References

  1. Bernasconi, A. (2006). Donde no somos tigres: Problema de la formación técnica en Chile en el contexto latinoamericano. En Foco, 72, 1–23.Google Scholar
  2. Blair, R., Kirkman, E., & Maxwell, J. (2013). Statistical abstract of undergraduate programs in the mathematical sciences in the United States: Fall 2010 CBMS survey. American Mathematical Society. Retrieved from https://www.ams.org
  3. Blaye, A. (1988). Confrontation socio-cognitive et résolution de problèmes (Unpublished doctoral dissertation). Centre de Recherche en Psychologie Cognitive, Université de Provence, Aix-enProvence, France.Google Scholar
  4. Brookes, E. A. (2015). Student roles in collaborative math groups (Unpublished doctoral dissertation). Rutgers The State University of New Jersey, New Brunswick, NY.Google Scholar
  5. CASEN. (2016). Síntesis de Resultados: Encuesta de Caracterización Socioeconómica Nacional (CASEN) 2015. Subsecretaría de Evaluación Social. Ministerio de Desarrollo Social, Gobierno de Chile.Google Scholar
  6. Castillo, D., & Alzamora, M. (2010). Situación de la práctica docente en la Educación Técnica Superior. Alkademeia, 8(2), 27–41.Google Scholar
  7. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.CrossRefGoogle Scholar
  8. Chiu, M. (2004). Adapting teacher interventions to student needs during cooperative learning: How to improve student problem solving and time on-task. American Educational Research Journal, 41, 365–399.CrossRefGoogle Scholar
  9. Crawford, P., Moseley, D., Nancarrow, M., & Ward, E. (2018). Calculus challenges: An active learning approach. Primus, 28(6), 616–625.CrossRefGoogle Scholar
  10. Dasgupta, N., Scircle, M. M., & Hunsinger, M. (2015). Female peers in small work groups enhance women’s motivation, verbal participation, and career aspirations in engineering. Proceedings of the National Academy of Sciences, 112(16), 4988–4993.CrossRefGoogle Scholar
  11. Dillenbourg, P. (1999). What do you mean by collaborative learning? In P. Dillenbourg (Ed.), Collaborative learning: Cognitive and computational approaches (pp. 1–19). Oxford: Elsevier.Google Scholar
  12. Eichler, J. F., & Peeples, J. (2016). Flipped classroom modules for large enrollment general chemistry courses: A low barrier approach to increase active learning and improve student grades. Chemistry Education Research and Practice, 17(1), 197–208.CrossRefGoogle Scholar
  13. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., et al. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.CrossRefGoogle Scholar
  14. Gasiewski, J. A., Eagan, M. K., Garcia, G. A., Hurtado, S., & Chang, M. J. (2012). From gatekeeping to engagement: A multicontextual, mixed method study of student academic engagement in introductory STEM courses. Research in Higher Education, 53(2), 229–261.CrossRefGoogle Scholar
  15. Graham, M. J., Frederick, J., Byars-Winston, A., Hunter, A. B., & Handelsman, J. (2013). Increasing persistence of college students in STEM. Science, 341(6153), 1455–1456.CrossRefGoogle Scholar
  16. Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13(5), 1089–1113.CrossRefGoogle Scholar
  17. Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48(8), 952–984.CrossRefGoogle Scholar
  18. Kunter, M., & Voss, T. (2013). The model of instructional quality in COACTIV: A multicriteria analysis. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 97–124). New York: Springer.CrossRefGoogle Scholar
  19. Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men of inquiry-based learning in college mathematics: A multi-institution study. Journal for Research in Mathematics Education, 45(4), 406–418.CrossRefGoogle Scholar
  20. Lewin, J. D., Vinson, E. L., Stetzer, M. R., & Smith, M. K. (2016). A campus-wide investigation of clicker implementation: The status of peer discussion in STEM classes. CBE Life Sciences Education, 15(1), 1–12.CrossRefGoogle Scholar
  21. Mesa, V., Celis, S., & Lande, E. (2014). Teaching approaches of community college mathematics faculty: Do they relate to classroom practices? American Educational Research Journal, 51(1), 117–151.CrossRefGoogle Scholar
  22. Nathan, M. J., & Kim, S. (2009). Regulation of teacher elicitations in the mathematics classroom. Cognition and Instruction, 27(2), 91–120.CrossRefGoogle Scholar
  23. Pea, R. D. (1993). Learning scientific concepts through material and social activities: Conversational analysis meets conceptual change. Educational Psychologist, 28(3), 265–277.CrossRefGoogle Scholar
  24. Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223–231.CrossRefGoogle Scholar
  25. Quiroz, C., & Celis, S. (2016). Metodología de estudio de las interacciones profesor-estudiantes en clases de Resolución de Problemas en Educación Superior. In XX Jornadas Nacionales de Educación Matemática. Valparaíso, Chile: Sociedad Chilena de Educación Matemática.Google Scholar
  26. Rogoff, B. (1990). Apprenticeship in thinking. New York: Oxford University Press.Google Scholar
  27. Rolando, R., Salamanca, J., Lara, A., & Blanco, C. (2012). Deserción & Reingreso a Educación Superior en Chile. Servicio de Información de Educación Superior, Ministerio de Educación, Gobierno de Chile.Google Scholar
  28. Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. Journal of the Learning Sciences, 2, 235–276.CrossRefGoogle Scholar
  29. Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1), 9–20.CrossRefGoogle Scholar
  30. Schleppegrell, M., & O’Hallaron, C. (2011). Teaching academic language in L2 secondary settings. Annual Review of Applied Linguistics, 31, 3–18.CrossRefGoogle Scholar
  31. Schneider, M., & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychological Bulletin, 143(6), 565.CrossRefGoogle Scholar
  32. Schwartz, D. L. (1995). The emergence of abstract dyad representations in dyad problem solving. The Journal of the Learning Sciences, 4(3), 321–354.CrossRefGoogle Scholar
  33. Sengupta-Irving, T., & Enyedy, N. (2015). Why engaging in mathematical practices may explain stronger outcomes in affect and engagement: Comparing student-driven with highly guided inquiry. Journal of the Learning Sciences, 24(4), 550–592.CrossRefGoogle Scholar
  34. Servicio de Información de Educación Superior. (2016). Informe Matrícula 2016 Educación Superior en Chile. Gobierno de Chile: Ministerio de Educación.Google Scholar
  35. Sfard, A. (2001). There is more to discourse than meets the cars: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46, 13–57.CrossRefGoogle Scholar
  36. Smith, M. K., Vinson, E. L., Smith, J. A., Lewin, J. D., & Stetzer, M. R. (2014). A campus-wide study of STEM courses: New perspectives on teaching practices and perceptions. CBE Life Sciences Education, 13(4), 624–635.CrossRefGoogle Scholar
  37. Stains, M., Harshman, J., Barker, M. K., Chasteen, S. V., Cole, R., DeChenne-Peters, S. E., et al. (2018). Anatomy of STEM teaching in North American universities. Science, 359(6833), 1468–1470.CrossRefGoogle Scholar
  38. Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM, 47(7), 1255–1267.CrossRefGoogle Scholar
  39. Tharp, R. G., & Gallimore, R. (1988). Rousing minds to life: Teaching, learning and schooling in social context. Cambridge: Cambridge University Press.Google Scholar
  40. Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296.CrossRefGoogle Scholar
  41. Wertsch, J. V. (1985). Adult-child interaction as a source of self-regulation in children. In S. R. Yussen (Ed.), The growth of reflection in children (pp. 69–97). Madison, WI: Academic Press.Google Scholar
  42. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100.CrossRefGoogle Scholar
  43. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27, 458–477.CrossRefGoogle Scholar
  44. Yelland, N., & Masters, J. (2007). Rethinking scaffolding in the information age. Computers & Education, 48(3), 362–382.CrossRefGoogle Scholar
  45. Yong, D., Levy, R., & Lape, N. (2015). Why no difference? A controlled flipped classroom study for an introductory differential equations course. Primus, 25(9–10), 907–921.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Celis
    • 1
    Email author
  • Carlos Quiroz
    • 2
  • Valentina Toro-Vidal
    • 1
  1. 1.Escuela de Ingeniería y Ciencias, FCFM, Universidad de ChileSantiagoChile
  2. 2.Centro de Investigación Avanzada en Educación, Universidad de ChileSantiagoChile

Personalised recommendations