Cancer of Reproductive System: Receptors and Targeting Strategies

  • Manish Gore
  • Amita Puranik
  • Abhishek Indurkar
  • Bismita Sonowal
  • Padma V. Devarajan
  • Ratnesh JainEmail author
  • Prajakta DandekarEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


Carcinogenesis in the different organs of the reproductive system, particularly, prostate, ovarian, and cervical tissues, involves aberrant expression of various physiological receptors belonging to different superfamilies. This chapter provides insights into the physiological receptors that are associated with the genesis, progression, metastasis, management, as well as the prognosis of the cancers of the male and female reproductive systems. It also highlights the structural and binding characteristics of the highly predominant receptors, namely, androgen, estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) receptors, which are overexpressed in these cancers and discusses various strategies to target them.


Reproductive Cancers Prostate Ovarian Cervical Receptors Structure Binding Target 



5Α-di-hydro testosterone




Antibody–drug conjugates


Aromatase inhibitors


Androgen response elements


Benign prostate hyperplasia


Cyclin-dependent kinase


Central nervous system


Castrate-resistant prostate cancer


DNA-binding domain






Epidermal growth factor


Epidermal growth factor receptor


Endometrial ovarian cancer


Estrogen receptor


Estrogen response elements


Follicle-stimulating hormone


Follicle-stimulating hormone receptor




Gonadotropin-releasing hormone


Gonadotropin-releasing hormone receptor


G-protein-coupled receptor


G-protein estrogen receptor


Human epidermal growth factor receptor-2


Hypothalamic–pituitary gonadal (axis)


Human papilloma virus


Hormone response elements


Heat shock proteins




Ligand-binding domain


Ligand-binding pocket


Luteinizing hormone


Luteinizing hormone receptor


Monoclonal antibodies


Metastatic castrate-resistant prostate cancer


Nuclear localization signal


N-terminal transcription regulational domain




Progesterone receptor


Retinoblastoma protein


Progesterone response elements


Prostate-specific antigen


Prostate-specific G-protein-coupled receptor


Prostate-specific membrane antigen


Prostate-specific membrane aptamers


Reticulo-endothelial system


Recommended phase 2 dose




Structure–activity relationships


Selective androgen receptor modulators


Severe combined immunodeficiency


Selective estrogen receptor modulators


Styrene–maleic scid


SMA-encapsulated raloxifene


Selective progesterone receptor modulators


Transmembrane domain


  1. 1.
    Chung S-H. Targeting female hormone receptors as cervical cancer therapy. Trends Endocrinol Metab. 2015;26(8):399–401.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zhang Q, Madden NE, Wong AST, Chow BKC, Lee LTO. The role of endocrine G protein-coupled receptors in ovarian cancer progression. Front Endocrinol. 2017;8:66.Google Scholar
  3. 3.
    Data on specific cancers: World Cancer Research Fund International; [cited 2018 July 20]. Available from:
  4. 4.
    Sharifi N, Salmaninejad A, Ferdosi S, Bajestani AN, Khaleghiyan M, Estiar MA, et al. HER2 gene amplification in patients with prostate cancer: evaluating a CISH-based method. Oncol Lett. 2016;12(6):4651–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ginsburg O, Bray F, Coleman MP, Vanderpuye V, Eniu A, Kotha SR, et al. The global burden of women’s cancers: a grand challenge in global health. Lancet. 2017;389(10071):847–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Townsley C. Cervical cancer. Elsevier Inc; 2007. Ontario, Canada.Google Scholar
  7. 7.
    Friese K, Kost B, Vattai A, Marmé F, Kuhn C, Mahner S, et al. The G protein-coupled estrogen receptor (GPER/GPR30) may serve as a prognostic marker in early-stage cervical cancer. J Cancer Res Clin Oncol. 2018;144(1):13–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Gharwan H, Bunch K, Annunziata C. The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocrine Relat Cancer. 2015;22(6):R339–63.CrossRefGoogle Scholar
  9. 9.
    Lukanova A, Kaaks R. Endogenous hormones and ovarian cancer: epidemiology and current hypotheses. Cancer Epidemiol Prev Biomarkers. 2005;14(1):98–107.Google Scholar
  10. 10.
    Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 2010;10(11):803.PubMedCrossRefGoogle Scholar
  11. 11.
    Daniilidis A, Karagiannis V. Epithelial ovarian cancer. Risk factors, screening and the role of prophylactic oophorectomy. Hippokratia. 2007;11(2):63.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, et al. Human prostate cancer risk factors. Cancer. 2004;101(S10):2371–490.PubMedCrossRefGoogle Scholar
  13. 13.
    White N, Burnstock G. P2 receptors and cancer. Trends Pharmacol Sci. 2006;27(4):211–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang L-H. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta. 2015;1848(10):2584–602.PubMedCrossRefGoogle Scholar
  15. 15.
    Ramírez A, Camacho J. The human papilloma virus–ion channel link in cancer: an alternative opportunity for diagnosis and therapy. Human papillomavirus and related diseases-from bench to bedside-research aspects. InTech; 2012. Belgium.Google Scholar
  16. 16.
    Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol. 2005;205(3):125–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Abdul M, Mccray SD, Hoosein NM. Expression of gamma-aminobutyric acid receptor (subtype A) in prostate cancer. Acta Oncol. 2008;47(8):1546–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Venuti A, Salani D, Manni V, Poggiali F, Bagnato A. Expression of endothelin 1 and endothelin A receptor in HPV-associated cervical carcinoma: new potential targets for anticancer therapy. FASEB J. 2000;14(14):2277–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G. Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res. 2009;15(14):4521–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cirilli A, Simeone P, Muller A, Bagnato A, Venuti A. Targeting endothelin receptor type A in human cervical carcinoma cells. J Cardiovasc Pharmacol. 2004;44:S72–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Sánchez-Hernández PE, Ramirez-Dueñas MG, Albarran-Somoza B, García-Iglesias T, del Toro-Arreola A, Franco-Topete R, et al. Protease-activated receptor-2 (PAR-2) in cervical cancer proliferation. Gynecol Oncol. 2008;108(1):19–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Cornelio DB, Meurer L, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor expression in cervical cancer. Oncology. 2007;73(5–6):340–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Cornelio DB, Meurer L, Schwartsmann G, Roesler R. The gastrin-releasing peptide receptor as a marker of dysplastic alterations in cervical epithelial cells. Oncology. 2012;82(2):90–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu C, Ding L, Bai L, Chen X, Kang H, Hou L, et al. Folate receptor alpha is associated with cervical carcinogenesis and regulates cervical cancer cells growth by activating ERK1/2/c-Fos/c-Jun. Biochem Biophys Res Commun. 2017;491(4):1083–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Bagnato A, Salani D, Di Castro V, Wu-Wong JR, Tecce R, Nicotra MR, et al. Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res. 1999;59(3):720–7.PubMedGoogle Scholar
  26. 26.
    Bagnato A, Spinella F, Rosano L. Emerging role of the endothelin axis in ovarian tumor progression. Endocr Relat Cancer. 2005;12(4):761–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Lin C, Majoor CJ, Roelofs JJ, de Kruif MD, Horlings HM, Borensztajn K, et al. Potential importance of protease activated receptor (PAR)-1 expression in the tumor stroma of non-small-cell lung cancer. BMC Cancer. 2017;17(1):113.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jahan I, Fujimoto J, Alam SM, Sato E, Sakaguchi H, Tamaya T. Role of protease activated receptor-2 in tumor advancement of ovarian cancers. Ann Oncol. 2007;18(9):1506–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Tang J, Li Z, Lu L, Cho CH, editors. β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Seminars in cancer biology. Elsevier; 2013. Hong Kong, China.Google Scholar
  30. 30.
    Fleischmann A, Waser B, Reubi JC. Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms. Anal Cell Pathol. 2007;29(5):421–33.Google Scholar
  31. 31.
    Cornelio D, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol. 2007;18(9):1457–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Filardo EJ, Thomas P. Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology. 2012;153(7):2953–62.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Qian H, Xuan J, Liu Y, Shi G. Function of G-protein-coupled estrogen receptor-1 in reproductive system tumors. J Immunol Res. 2016;2016:1.Google Scholar
  34. 34.
    Siu MK, Kong DS, Chan HY, Wong ES, Ip PP, Jiang L, et al. Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS One. 2012;7(11):e47201.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Henriksen R, Dizeyi N, Abrahamsson P-A. Expression of serotonin receptors 5-HT1A, 5-HT1B, 5-HT2B and 5-HT4 in ovary and in ovarian tumours. Anticancer Res. 2012;32(4):1361–6.PubMedGoogle Scholar
  36. 36.
    Gohji K, Kitazawa S, Tamada H, Katsuoka Y, Nakajima M. Expression of endothelin receptor a associated with prostate cancer progression. J Urol. 2001;165(3):1033–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nelson JB, Udan MS, Guruli G, Pflug BR. Endothelin-1 inhibits apoptosis in prostate cancer. Neoplasia. 2005;7(7):631–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Black PC, Mize GJ, Karlin P, Greenberg DL, Hawley SJ, True LD, et al. Overexpression of protease-activated receptors-1,-2, and-4 (PAR-1,-2, and-4) in prostate cancer. Prostate. 2007;67(7):743–56.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yu G, Jiang P, Xiang Y, Zhang Y, Zhu Z, Zhang C, et al. Increased expression of protease-activated receptor 4 and trefoil factor 2 in human colorectal cancer. PLoS One. 2015;10(4):e0122678.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yuan T-C, Lin M-F. Protease-activated receptor 1: a role in prostate cancer metastasis. Clin Prostate Cancer. 2004;3(3):189–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Braadland PR, Ramberg HA, Grytli HH, Taskén KA. β-adrenergic receptor signaling in prostate cancer. Front Oncol. 2015;4:375.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nagasaki S, Nakamura Y, Maekawa T, Akahira J, Miki Y, Suzuki T, et al. Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor βcx in human prostate carcinoma. Neoplasma. 2012;59(2):224–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Cao W, Li F, Yao J, Yu J. Prostate specific G protein coupled receptor is associated with prostate cancer prognosis and affects cancer cell proliferation and invasion. BMC Cancer. 2015;15(1):915.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Weng J, Wang J, Hu X, Wang F, Ittmann M, Liu M. PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer. Int J Cancer. 2006;118(6):1471–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Patel N, Itakura T, Jeong S, Liao C-P, Roy-Burman P, Zandi E, et al. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. PLoS One. 2015;10(2):e0117758.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Guo R, Kasbohm EA, Arora P, Sample CJ, Baban B, Sud N, et al. Expression and function of lysophosphatidic acid LPA1 receptor in prostate cancer cells. Endocrinology. 2006;147(10):4883–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Limonta P, Manea M. Gonadotropin-releasing hormone receptors as molecular therapeutic targets in prostate cancer: current options and emerging strategies. Cancer Treat Rev. 2013;39(6):647–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Dizeyi N, Bjartell A, Hedlund P, Tasken K, Gadaleanu V, Abrahamsson P-A. Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol. 2005;47(6):895–900.PubMedCrossRefGoogle Scholar
  49. 49.
    Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N, et al. Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate. 2004;59(3):328–36.PubMedCrossRefGoogle Scholar
  50. 50.
    Oh D-Y, Kim S, Choi Y-L, Cho YJ, Oh E, Choi J-J, et al. HER2 as a novel therapeutic target for cervical cancer. Oncotarget. 2015;6(34):36219.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Soonthornthum T, Arias-Pulido H, Joste N, Lomo L, Muller C, Rutledge T, et al. Epidermal growth factor receptor as a biomarker for cervical cancer. Ann Oncol. 2011;22(10):2166–78.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kuramoto H, Hongo A, Liu YX, Ojima Y, Nakamura K, Seki N, et al. Immunohistochemical evaluation of insulin-like growth factor I receptor status in cervical cancer specimens. Acta Med Okayama. 2008;62(4):251–9.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Frumovitz M, Sood AK. Vascular endothelial growth factor (VEGF) pathway as a therapeutic target in gynecologic malignancies. Gynecol Oncol. 2007;104(3):768–78.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lopez-Pulido EI, Muñoz-Valle JF, Del Toro-Arreola S, Jave-Suárez LF, Bueno-Topete MR, Estrada-Chávez C, et al. High expression of prolactin receptor is associated with cell survival in cervical cancer cells. Cancer Cell Int. 2013;13(1):103.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Peng J, Qi S, Wang P, Li W, Liu C, Li F. Diagnosis and prognostic significance of c-Met in cervical cancer: a meta-analysis. Dis Markers. 2016;2016:1.CrossRefGoogle Scholar
  56. 56.
    Choi CH, Chung J-Y, Kim J-H, Kim B-G, Hewitt SM. Expression of fibroblast growth factor receptor family members is associated with prognosis in early stage cervical cancer patients. J Transl Med. 2016;14(1):124.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Amler LC, Wang Y, Hampton G. HER2 as a therapeutic target in ovarian cancer. Ovarian cancer-clinical and therapeutic perspectives. InTech; 2012. Croatia.Google Scholar
  58. 58.
    Mehner C, Oberg AL, Goergen KM, Kalli KR, Maurer MJ, Nassar A, et al. EGFR as a prognostic biomarker and therapeutic target in ovarian cancer: evaluation of patient cohort and literature review. Genes Cancer. 2017;8(5–6):589.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Gotlieb WH, Bruchim I, Gu J, Shi Y, Camirand A, Blouin M-J, et al. Insulin-like growth factor receptor I targeting in epithelial ovarian cancer. Gynecol Oncol. 2006;100(2):389–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 2017;108(3):296–307.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Crickard K, Gross JL, Crickard U, Yoonessi M, Lele S, Herblin WF, et al. Basic fibroblast growth factor and receptor expression in human ovarian cancer. Gynecol Oncol. 1994;55(2):277–84.PubMedCrossRefGoogle Scholar
  62. 62.
    Omar N, Yan B, Salto-Tellez M. HER2: an emerging biomarker in non-breast and non-gastric cancers. Pathogenesis. 2015;2(3):1–9.CrossRefGoogle Scholar
  63. 63.
    Day KC, Hiles GL, Kozminsky M, Dawsey SJ, Paul A, Broses LJ, et al. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res. 2017;77(1):74–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Wu J, Yu E. Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev. 2014;33(2–3):607–17.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yang J, Wu HF, Qian LX, Zhang W, Hua LX, Yu ML, et al. Increased expressions of vascular endothelial growth factor (VEGF), VEGF-C and VEGF receptor-3 in prostate cancer tissue are associated with tumor progression. Asian J Androl. 2006;8(2):169–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11(4):709–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Deuster E, Jeschke U, Ye Y, Mahner S, Czogalla B. Vitamin D and VDR in gynecological cancers—a systematic review. Int J Mol Sci. 2017;18(11):2328.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Ivanova T, Petrenko A, Gritsko T, Vinokourova S, Eshilev E, Kobzeva V, et al. Methylation and silencing of the retinoic acid receptor-β2 gene in cervical cancer. BMC Cancer. 2002;2(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Voutsadakis IA. Hormone receptors in serous ovarian carcinoma: prognosis, pathogenesis, and treatment considerations. Clin Med Insights Oncol. 2016;10:17–25.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kaiser P, Körner M, Kappeler A, Aebi S. Retinoid receptors in ovarian cancer: expression and prognosis. Ann Oncol. 2005;16(9):1477–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Tan ME, Li J, Xu HE, Melcher K, Yong E-L. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36(1):3.PubMedCrossRefGoogle Scholar
  72. 72.
    Christoforou P, Christopoulos PF, Koutsilieris M. The role of estrogen receptor β in prostate cancer. Mol Med. 2014;20(1):427.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chen R, Yu Y, Dong X. Progesterone receptor in the prostate: a potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol. 2017;166:91–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Elix C, Pal SK, Jones JO. The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian J Androl. 2018;20(3):238.PubMedCrossRefGoogle Scholar
  75. 75.
    Hongmao S. A practical guide to rational drug design. Woodhead Publishing; 2015. Maryland, USAGoogle Scholar
  76. 76.
    Robinson-Rechavi M, Garcia HE, Laudet V. The nuclear receptor superfamily. J Cell Sci. 2003;116(4):585–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Zuo H, Wan Y. Nuclear receptors in skeletal homeostasis. Curr Top Dev Biol. 2017;125:71–107. Elsevier.PubMedCrossRefGoogle Scholar
  78. 78.
    Gao X, Loggie BW, Nawaz Z. The roles of sex steroid receptor coregulators in cancer. Mol Cancer. 2002;1(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    de Almeida Chuffa LG, Lupi-Júnior LA, Costa AB, de Arruda Amorim JP, Seiva FRF. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids. 2017;118:93–108.CrossRefGoogle Scholar
  80. 80.
    Mungenast F, Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol. 2014;5:192.CrossRefGoogle Scholar
  81. 81.
    Park S, Han JM, Cheon J, Hwang J-I, Seong JY. Apoptotic death of prostate cancer cells by a gonadotropin-releasing hormone-II antagonist. PLoS One. 2014;9(6):e99723.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Limonta P, Marelli MM, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev. 2012;33(5):784–811.PubMedCrossRefGoogle Scholar
  83. 83.
    Cheung LW, Yung S, Chan T-M, Leung PC, Wong AS. Targeting gonadotropin-releasing hormone receptor inhibits the early step of ovarian cancer metastasis by modulating tumor-mesothelial adhesion. Mol Ther. 2013;21(1):78–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev. 2005;105(9):3352–70.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lonergan PE, Tindall DJ. Androgen receptor signaling in prostate cancer development and progression. J Carcinog. 2011;10.Google Scholar
  86. 86.
    Jernberg E, Bergh A, Wikström P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect. 2017;6(8):R146–R61.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zhu H, Zhu X, Zheng L, Hu X, Sun L, Zhu X. The role of the androgen receptor in ovarian cancer carcinogenesis and its clinical implications. Oncotarget. 2017;8(17):29395.PubMedCrossRefGoogle Scholar
  88. 88.
    Munoz J, Wheler JJ, Kurzrock R. Androgen receptors beyond prostate cancer: an old marker as a new target. Oncotarget. 2015;6(2):592.PubMedGoogle Scholar
  89. 89.
    Foye WO. Foye’s principles of medicinal chemistry. Lippincott Williams & Wilkins; 2008. Philadelphia, USA.Google Scholar
  90. 90.
    Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New opportunities for targeting the androgen receptor in prostate cancer. Cold Spring Harb Perspect Med. 2018:a030478.PubMedCrossRefGoogle Scholar
  91. 91.
    Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116(3):561–70.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lee H-R, Kim T-H, Choi K-C. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res. 2012;28(2):71–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chen GG, Zeng Q, Tse GM. Estrogen and its receptors in cancer. Med Res Rev. 2008;28(6):954–74.PubMedCrossRefGoogle Scholar
  95. 95.
    Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Castoria G. Estrogens and their receptors in prostate cancer: therapeutic implications. Front Oncol. 2018;8:2.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sato T, Miyagawa S, Iguchi T. Estradiol-17β. Handbook of hormones. Elsevier; 2015. p. 520-e94G-4. Japan.Google Scholar
  97. 97.
    Farooq A. Structural and functional diversity of estrogen receptor ligands. Curr Top Med Chem. 2015;15(14):1372–84.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gehm BD, McAndrews JM, Chien P-Y, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci. 1997;94(25):14138–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Jordan VC, Mittal S, Gosden B, Koch R, Lieberman ME. Structure-activity relationships of estrogens. Environ Health Perspect. 1985;61:97.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Diep CH, Daniel AR, Mauro LJ, Knutson TP, Lange CA. Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol. 2015;54(2):R31–53.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Valadez-Cosmes P, Vázquez-Martínez ER, Cerbon M, Camacho-Arroyo I. Membrane progesterone receptors in reproduction and cancer. Mol Cell Endocrinol. 2016;434:166–75.PubMedCrossRefGoogle Scholar
  102. 102.
    Sato T, Miyagawa S, Iguchi T. Progesterone. Handbook of hormones. Elsevier; 2015. p. 507-e94A-3. Japan.Google Scholar
  103. 103.
    Daniel AR, Hagan CR, Lange CA. Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab. 2011;6(3):359–69.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Yu Y, Liu L, Xie N, Xue H, Fazli L, Buttyan R, et al. Expression and function of the progesterone receptor in human prostate stroma provide novel insights to cell proliferation control. J Clin Endocrinol Metabol. 2013;98(7):2887–96.CrossRefGoogle Scholar
  105. 105.
    Lee P, Rosen DG, Zhu C, Silva EG, Liu J. Expression of progesterone receptor is a favorable prognostic marker in ovarian cancer. Gynecol Oncol. 2005;96(3):671–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2014;21(2):155–73.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wang L, Chadwick W, Park S-S, Zhou Y, Silver N, Martin B, et al. Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS Neurol Disord Drug Targets. 2010;9(5):651–60.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Flanagan CA, Manilall A. Gonadotropin-releasing hormone (GnRH) receptor structure and GnRH binding. Front Endocrinol. 2017;8:274.CrossRefGoogle Scholar
  109. 109.
    Sealfon SC, Millar RP. Functional domains of the gonadotropin-releasing hormone receptor. Cell Mol Neurobiol. 1995;15(1):25–42.PubMedCrossRefGoogle Scholar
  110. 110.
    Sealfon SC, Weinstein H, Millar RP. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev. 1997;18(2):180–205.PubMedCrossRefGoogle Scholar
  111. 111.
    Bhasin S, Jasuja R. Selective androgen receptor modulators (SARMs) as function promoting therapies. Curr Opin Clin Nutr Metab Care. 2009;12(3):232.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Reid P, Kantoff P, Oh W. Antiandrogens in prostate cancer. Investig New Drugs. 1999;17(3):271–84.CrossRefGoogle Scholar
  113. 113.
    Singh SM, Gauthier S, Labrie F. Androgen receptor antagonists (antiandrogens) structure-activity relationships. Curr Med Chem. 2000;7(2):211–47.PubMedCrossRefGoogle Scholar
  114. 114.
    Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol. 2012;352(1–2):79–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Yang SH, Song C-H, Van HTM, Park E, Khadka DB, Gong E-Y, et al. SAR based design of nicotinamides as a novel class of androgen receptor antagonists for prostate cancer. J Med Chem. 2013;56(8):3414–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Tesei A, Leonetti C, Di Donato M, Gabucci E, Porru M, Varchi G, et al. Effect of small molecules modulating androgen receptor (SARMs) in human prostate cancer models. PLoS One. 2013;8(5):e62657.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hwang DJ, Yang J, Xu H, Rakov IM, Mohler ML, Dalton JT, et al. Arylisothiocyanato selective androgen receptor modulators (SARMs) for prostate cancer. Bioorg Med Chem. 2006;14(19):6525–38.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Banuelos CA, Tavakoli I, Tien AH, Caley DP, Mawji NR, Li Z, et al. Sintokamide A is a novel antagonist of androgen receptor that uniquely binds activation function-1 in its amino-terminal domain. J Biol Chem. 2016;291(42):22231–43.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Farooqi AA, Sarkar FH. Overview on the complexity of androgen receptor-targeted therapy for prostate cancer. Cancer Cell Int. 2015;15(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Li Y, Hu W, Fu S, Li J, Liu J, Kavanagh J. Aromatase inhibitors in ovarian cancer: is there a role? Int J Gynecol Cancer. 2008;18(4):600–14.PubMedCrossRefGoogle Scholar
  121. 121.
    Ho S-M. Estrogen, progesterone and epithelial ovarian cancer. Reprod Biol Endocrinol. 2003;1(1):73.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ali M, Al-Hendy A. Selective progesterone receptor modulators for fertility preservation in women with symptomatic uterine fibroids. Biol Reprod. 2017;97(3):337–52.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM. Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update. 2005;11(3):293–307.PubMedCrossRefGoogle Scholar
  124. 124.
    Hormone therapy for ovarian cancer: American Cancer Society; [cited 2018 October 20]. Available from:
  125. 125.
    Erdkamp F, Boone N, Janknegt R, Zambon V. GnRH agonists and antagonists in prostate cancer. Gene Biosimilars Initiative J. 2014;3:133–42.Google Scholar
  126. 126.
    Ast G. Drug-targeting strategies for prostate cancer. Curr Pharm Des. 2003;9(6):455–66.PubMedCrossRefGoogle Scholar
  127. 127.
    Shah VM, Nguyen DX, Al Fatease A, Patel P, Cote B, Woo Y, et al. Liposomal formulation of hypoxia activated prodrug for the treatment of ovarian cancer. J Control Release. 2018;291:169–83.PubMedCrossRefGoogle Scholar
  128. 128.
    Barve A, Jin W, Cheng K. Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release. 2014;187:118–32.PubMedCrossRefGoogle Scholar
  129. 129.
    Imamura Y, Sadar MD. Androgen receptor targeted therapies in castration-resistant prostate cancer: bench to clinic. Int J Urol. 2016;23(8):654–65.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523(7560):347.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kothari R, Argenta P, Fowler J, Carter J, Shimp W. Antiestrogen therapy in recurrent ovarian cancer resulting in 28 months of stable disease: a case report and review of the literature. Arch Oncol. 2010;18(1–2):32.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Au WW, Abdou-Salama S, Al-Hendy A. Inhibition of growth of cervical cancer cells using a dominant negative estrogen receptor gene. Gynecol Oncol. 2007;104(2):276–80.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sundararajan V, Chen S, Rosengren R. Raloxifene: promises and challenges as a drug treatment for castrate resistant prostate cancer. Enliven Toxicol Allied Clin Pharmacol. 2017;4(1):001.Google Scholar
  134. 134.
    Ivachtchenko AV, Mitkin OD, Kudan EV, Rjahovsky AA, Vorobiev AA, Trifelenkov AS, et al. Preclinical development of ONC1-13B, novel antiandrogen for prostate cancer treatment. J Cancer. 2014;5(2):133.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Jurado R, Lopez-Flores A, Alvarez A, García-López P. Cisplatin cytotoxicity is increased by mifepristone in cervical carcinoma: an in vitro and in vivo study. Oncol Rep. 2009;22(5):1237–45.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Segovia-Mendoza M, Jurado R, Mir R, Medina LA, Prado-Garcia H, Garcia-Lopez P. Antihormonal agents as a strategy to improve the effect of chemo-radiation in cervical cancer: in vitro and in vivo study. BMC Cancer. 2015;15(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Andersen CL, Sikora MJ, Boisen MM, Ma T, Christie A, Tseng G, et al. Active estrogen receptor-alpha signaling in ovarian cancer models and clinical specimens. Clin Cancer Res. 2017;23(14):3802–12.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Letsch M, Schally AV, Szepeshazi K, Halmos G, Nagy A. Preclinical evaluation of targeted cytotoxic luteinizing hormone-releasing hormone analogue AN-152 in androgen-sensitive and insensitive prostate cancers. Clin Cancer Res. 2003;9(12):4505–13.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin Cancer Res. 2017;23(13):3251–62.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Ribociclib and letrozole in treating patients with relapsed ER positive ovarian, fallopian tube, primary peritoneal, or endometrial cancer [Internet]. Mayo Clinic. 2016 [cited October 25, 2018]. Available from:
  141. 141.
    Phase 1–2 study of onapristone in patients with progesterone receptor expressing cancers [Internet]. Arno Therapeutics. 2014 [cited October 25, 2018]. Available from:
  142. 142.
    Enzalutamide in patients with androgen receptor positive (AR+) ovarian, primary peritoneal or fallopian tube cancer and one, two or three prior therapies [Internet]. Memorial Sloan Kettering Cancer Center. 2013 [cited October 26, 2018]. Available from:
  143. 143.
    A trial of tamoxifen and letrozole in recurrent and persistent squamous cell carcinoma of the cervix (TGOG1005) [Internet]. Buddhist Tzu Chi General Hospital. 2015 [cited October 26, 2018]. Available from:
  144. 144.
    Metformin hydrochloride and doxycycline in treating patients with localized breast or uterine cancer [Internet]. Sidney Kimmel Cancer Center at Thomas Jefferson University. 2016 [cited October 27, 2018]. Available from:
  145. 145.
    Dynamics of androgen receptor genomics and transcriptomics after neoadjuvant androgen ablation (DARANA) [Internet]. The Netherlands Cancer Institute. 2017 [cited October 27, 2018]. Available from:
  146. 146.
    A safety and pharmacokinetics study of niraparib plus an androgen receptor-targeted therapy in men with metastatic castration-resistant prostate cancer (BEDIVERE) [Internet]. Janssen Research & Development, LLC. 2016 [cited October 28, 2018]. Available from:

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Manish Gore
    • 1
  • Amita Puranik
    • 3
  • Abhishek Indurkar
    • 1
  • Bismita Sonowal
    • 1
  • Padma V. Devarajan
    • 2
  • Ratnesh Jain
    • 3
    Email author
  • Prajakta Dandekar
    • 2
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia
  3. 3.Department of Chemical EngineeringInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations