Breast Cancer Receptors and Targeting Strategies

  • Ashish Pandit
  • Lalit Khare
  • Padma V. Devarajan
  • Ratnesh JainEmail author
  • Prajakta DandekarEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


Breast cancer (BC) is the most common cause of death among women worldwide. Characterized by heterogeneous nature, treatment of breast cancer becomes very challenging considering its late detection. Causes for breast cancer and their treatment modalities have been well identified; still management of disease is an uphill task due to complex pathophysiology associated with it. Chemotherapy has remained the mainstay for treatment of BC, although with advent of novel targeted therapies, a paradigm shift is seen in treatment options available for BC. Targeted regimes toward receptors expressed on tumorous surfaces are developed that deploy antibodies and peptides for treating BC. Moreover, with avoidance of side effects of chemotherapy with concomitant annihilation of cancerous cells, it is very imperative to understand the underlying mechanisms of receptors governing the process. Therefore, with an attempt toward comprehensive understanding of the subject, this chapter explores some of the important receptors involved in breast cancer such as estrogen receptor, progesterone receptor, and human epidermal receptor-2. Special emphasis is given for the modulation of their signal transduction mechanism attaining desired goals. Various formulation aspects that are currently undertaken toward BC management are also discussed in brief.


Breast cancer Progesterone receptor Estrogen receptor Triple-negative breast cancer Human epidermal receptor 



ATP-binding cassettes


Antibody-dependent cell-mediated cytotoxicity


Breast cancer


Epidermal growth factor receptors


Estrogen receptor modulators


Fluorescent in situ hybridization assay


Human epidermal growth factor receptor-2


Invasive ductal carcinomas


Immune Histochemical studies


Invasive lobular carcinoma


Membrane-assisted steroid signaling


Novel drug delivery systems




Progesterone receptor


Selective estrogen receptor


Trastuzumab emtansine


Triple-negative breast cancer


  1. 1.
    Dieterich M, Reimer T, Berling A. Influence of lifestyle factors on breast cancer risk. Breast Care. 2014;9(6):407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Care P. Assessment of suspected cancer. InnovAiT. 2008;1:94–107.CrossRefGoogle Scholar
  3. 3.
    Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 2015;138:168–175PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gui G. Male breast cancer: aetiology in the first of a two-part. Trends in Urology& Men’s Health. 2012;(3):29–31.Google Scholar
  5. 5.
    Yalaza M, İnan A, Bozer M. Male breast cancer. J Breast Health 2016;(4):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Reed AEM, Kutasovic JR, Lakhani SR, Simpson PT. Invasive lobular carcinoma of the breast: morphology, biomarkers and ’omics. Breast Cancer Res. 2015;17:1–11.Google Scholar
  7. 7.
    Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne). 2017;4:227.CrossRefGoogle Scholar
  8. 8.
    Übersichtsarbeit RA, Sinn H, Kreipe H. Breast care of breast tumors. 4th ed. Focusing. 2013;149–54.Google Scholar
  9. 9.
    Kumar R, Sharma A, Tiwari RK. Application of microarray in breast cancer: an overview. J Pharm Bioallied Sci. 2012;4(1):21–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012;20(3):256–67.CrossRefGoogle Scholar
  11. 11.
    Athmanathan NP, Ilous AMIB. HER2 testing in breast cancer: an overview of current techniques and recent developments. Pathology. 2012;44(7):587–95.CrossRefGoogle Scholar
  12. 12.
    Furrer D, Sanschagrin F, Jacob S. Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. Am J Clin Pathol. 2015;144(5):686–703.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Graus-porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tzahar E, Waterman H, Chen X, Levkowitz GIL, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16(10):5276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wahler J, Suh N. Targeting HER2 positive breast cancer with chemopreventive agents. Curr Pharmacol Rep. 2015;1(5):324–35.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tsang RY, Finn RS. Beyond trastuzumab: novel therapeutic strategies in HER2-positive metastatic breast cancer. Br J Cancer. 2012;106(1):6–13.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA. Heat shock protein 90 (Hsp90) expression and breast cancer. Pharmaceuticals (Basel). 2012;5(9):1008–20.CrossRefGoogle Scholar
  20. 20.
    Cameron DA, Stein S. Drug insight: intracellular inhibitors of HER2 — clinical development of lapatinib in breast cancer. Nat Clin Pract Oncol. 2008;5(9):512–20.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chadha J, Stuart S. Targeted agents for HER2-positive breast cancer: optimal use in older patients. Drugs Aging. 2015;32(12):975–82.CrossRefGoogle Scholar
  22. 22.
    Tanner M, Kapanen AI, Carraway KL, Nagy P, Friedla E, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–83.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:1–7.CrossRefGoogle Scholar
  24. 24.
    Gagliato DDM, Leonardo D, Jardim F, Pereira MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2 + breast cancer introduction: pathways to trastuzumab. Oncotarget. 2016;7(39):64431–46.CrossRefGoogle Scholar
  25. 25.
    Rosenzweig SA. Therapeutics E. HHS public access. 2018;1–24.Google Scholar
  26. 26.
    Murphy L, Cherlet T, Lewis A, Banu Y, Watson P, Murphy L, et al. New insights into estrogen receptor function in human breast cancer. Ann. Med. 2015;3890:614–631.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fisher ER, Osborne CK, Mcguire WL, Redmond C, Sc D, Knight WA, et al. Correlation of primary breast cancer histopathology and estrogen receptor content. Breast Cancer Res Treat. 1981;1:37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Charles R. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci. 2013;111:2–7.CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Qiao JX, Shetty A, Wu G, Huang Y, Davidson NE, et al. Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci. 2014;71(8):1549.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Voudouri K, Berdiaki A, Tzardi M, Tzanakakis GN, Nikitovic D. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol. 2015;2015:1–10.CrossRefGoogle Scholar
  31. 31.
    Wei W, Chen Z, Zhang K, Yang X, Wu Y, Chen X, et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor- negative breast cancer cells in vitro and in vivo. Cell Death Dis. 2014;5(132):e1428–e1428.CrossRefGoogle Scholar
  32. 32.
    Manuscript A. NIH Public Access. 2013;318(16):1–14.Google Scholar
  33. 33.
    Okoh V, Deoraj A, Roy D. Biochimica et Biophysica Acta Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. BBA Rev Cancer. 2011;1815(1):115–33.Google Scholar
  34. 34.
    Puhalla S, Bhattacharya S, Davidson NE. Hormonal therapy in breast cancer: a model disease for the personalization of cancer care. Mol Oncol. 2012;6:222–36.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Miller WR. Biological rationale for endocrine therapy in breast cancer. Best Pract Res Clin Endocrinol Metab. 2004;18(1):1–32.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Manuscript A. NIH Public Access. 2011;280(40):34210–34217.Google Scholar
  37. 37.
    Ndm ON, Borges S, Desta Z, Li L, Skaar TC, Ward BA, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther. 2006;80(1):61–74.CrossRefGoogle Scholar
  38. 38.
    Manuscript A, Inhibitors A, Cancer B. NIH Public Access. 2012;125(410):13–22.Google Scholar
  39. 39.
    Brueggemeier RW, Hackett JC, Diaz-cruz ES. Aromatase inhibitors in the treatment of breast cancer. Endocr Rev. 2005;26(3):331–45.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Spring L, Bardia A, Modi S, Hospital G, Kettering S. HHS Public Access. 2017;21(113):65–74.Google Scholar
  41. 41.
    Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor – positive , HER2 – negative breast cancer. Breast Cancer. 2017;(0123456789).Google Scholar
  42. 42.
    Marsden R. AKT antagonist AZD5363 influences estrogen receptor function in endocrine resistant breast cancer and synergises with fulvestrant (ICI182780). Mol. Cancer Ther. 2015;44(0):2035–2048.Google Scholar
  43. 43.
    Guiochon-Mantel A, Milgrom E. Role of Progestins and progesterone receptors in breast cancer biology. Endocrinology of breast cancer. 11:245–259.Google Scholar
  44. 44.
    Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2018;23(30):7721–35.CrossRefGoogle Scholar
  45. 45.
    Abderrahman B, Jordan VC. Steroid receptors in breast cancer. 5th ed. The breast. Comprehensive management of benign and malignant diseases. Elsevier Inc. 2017;2:p. 272–81.e2.Google Scholar
  46. 46.
    Kariagina A, Aupperlee MD, Haslam SZ. NIH Public Access 2010;18(1):11–33.Google Scholar
  47. 47.
    Tung L, Melville MY, Hovland AR, Takimoto GS, Sartorius CA, Horwitz KB. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol. 2014;8(10):1347–60.Google Scholar
  48. 48.
    Aupperlee M, Kariagina A, Osuch J, Haslam SZ. Progestins and breast cancer. Breast Dis. 2006;24:37–57.CrossRefGoogle Scholar
  49. 49.
    Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther. 2014;142(1):114–25.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mcdonnell DP. Unraveling the human progesterone receptor signal transduction pathway insights into antiprogestin action. Trends Endocrinol Metab. 1995;6(4):133–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Obr AE, Edwards DP. Molecular and cellular endocrinology the biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol. 2012;357(1–2):4–17.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kolanska K. Progesterone receptor modulators: current applications and perspectives 2019;2:622–627.Google Scholar
  53. 53.
    Chavez-macgregor M, Brown P. HHS Public Access. 2015;15(13).Google Scholar
  54. 54.
    Manuscript A, Onlinefirst P. Downloaded from on January 12, 2015. © 2014 American Association for Cancer Research. 2014.
  55. 55.
    Denkert C, Liedtke C, Tutt A, Von Minckwitz G. Breast cancer 3 molecular alterations in triple-negative breast cancer. Lancet. 2016;6736(16):1–13.Google Scholar
  56. 56.
    Berrada N, Delaloge S, Andre F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21(Suppl 7):30–5.CrossRefGoogle Scholar
  57. 57.
    Cancer B. HHS Public Access. 2018;7(1):1–12.Google Scholar
  58. 58.
    Omarini C. Neoadjuvant treatments in triple-negative breast cancer patients: where we are now and where we are going. Cancer Manag Res. 2018;10:91–103.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ezzat AA, Ibrahim EM, Ajarim DS, Rahal MM, Raja MA, Tulbah AM, et al. Phase II study of neoadjuvant paclitaxel and cisplatin for operable and locally advanced breast cancer: analysis of 126 patients. Br J Cancer. 2004;90(5):968–74.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Goodin S. Novel cytotoxic agents: epothilones. Am J Health Syst Pharm. 2008;65(10 Suppl 3):10–5.CrossRefGoogle Scholar
  61. 61.
    Kubista E, Verrill M, Ciruelos E, Steger GG, Manikhas G, Xu L-A, et al. Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer. J Clin Oncol. 2008;27(4):526–34.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Harbeck N, Gottschalk N, Nitz U, Liedtke C, Gluz O, Pusztai L. Triple-negative breast cancer – current status and future directions. Ann Oncol. 2009;20(12):1913–27.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sawka CA, Pritchard KI, Narod SA, Lickley LA, Kahn HK, Rawlinson E, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–34.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Cheang M, Chia SK, Tu D, Jiang S, Shepherd LE, Pritchard KI, Nielsen TO. Anthracyclines in basal breast cancer: the NCIC-CTG trial MA5 comparing adjuvant CMF to CEF. J Clin Oncol. 2009;27(15S):Abstract 519.Google Scholar
  65. 65.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. 2005;434(7035):236–9.Google Scholar
  66. 66.
    Slovin SF, Wang X, Hullings M, Arauz G, Bartido S, Lewis JS, Schöder H, Zanzonico P, Scher HI, Riviere I. Chimeric antigen receptor (CAR+) modified T cells targeting prostrate – specific antigen (PSMA) in patients (pts) with castrate metastatic prostrate cancer (CMPC). J Clin Oncol. 31:917–921.Google Scholar
  67. 67.
    Lane HA, Fumagalli S, Ruetz S, Beuvink I, Zilbermann F, O’Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120(6):747–59.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tanei T, Choi DS, Rodriguez AA, Liang DH, Dobrolecki L, Ghosh M, et al. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res [Internet]. 2016;18(1):1–9. Available from:
  69. 69.
    Cancer B, Service M, Nazionale I. Trople-negative breast cancer: an unmet medical need. Oncologist. 2011;16(suppl 1):1–11.Google Scholar
  70. 70.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Fuqua SAW, Savage MI, et al. HHS public access. Clin Cancer Res. 2016;21(7):1688–98.CrossRefGoogle Scholar
  71. 71.
    Jotte R. IMpower 131. 2018;(18):10–3.Google Scholar
  72. 72.
    Hernando A, Kelly C, Morris P, Bulger K, Gullo G, Egan K, et al. Abstract OT3-06-05: a phase Ib/II trial of coPANlisib in combination with tratuzumab in pretreated recurrent or metastatic HER2-positive breast cancer “PantHER.”. Cancer Res. 2018;78(4 Supplement):OT3-06-05-OT3-06–05.Google Scholar
  73. 73.
    Gianni L, Partesotti G, Generali D, Montemurro F, Musolino A, Bisagni G, et al. Abstract OT1-03-03: phase II, open label, randomized, biomarker study of immune-mediated mechanism of action of neoadjuvant subcutaneous trastuzumab in patients with operable or locally advanced/Inflammatory HER2-positive breast cancer. ImmunHER trial on. Cancer Res. 2018;78(4 Supplement):OT1-03-03-OT1-03–03.Google Scholar
  74. 74.
    Alba E, Montemurro F, Hortobagyi G, O’Shaughnessy J, Im S-A, Dieras V, et al. Abstract OT3-05-06: EarLEE-2: a phase 3 study of ribociclib + endocrine therapy (ET) for adjuvant treatment of patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–), intermediate-risk, early breast cancer. Cancer Res. 2018;78(4 Supplement):OT3-05-06-OT3-05–6.Google Scholar
  75. 75.
    Bernardo A, Malorni L, Criscitiello C, Martignetti A, Boni L, Moretti E, et al. Palbociclib as single agent or in combination with the endocrine therapy received before disease progression for estrogen receptor-positive, HER2-negative metastatic breast cancer: TREnd trial. Ann Oncol. 2018;29(8):1748–54.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Benito S, Galluzzi L, Escudero M, Berraondo P, Rojo F, de la Cruz L, et al. Abstract OT1-01-02: a multicenter phase II trial to evaluate the efficacy and safety of pembrolizumab and gemcitabine in patients with HER2-negative advanced breast cancer: GEICAM/2015-04 PANGEA-Breast. Cancer Res. 2018;78(4 Supplement):OT1-01-02-OT1-01–2.Google Scholar
  77. 77.
    Mackey JR, Eiermann W, Fresco R, Fung H, Carrez S, Lopez C, et al. Abstract OT1-05-03: TRIO030: a presurgical tissue-acquisition study to evaluate molecular alterations in human breast cancer tissue following short-term exposure to the androgen receptor antagonist darolutamide. Cancer Res [Internet]. 2018;78(4 Supplement):OT1-05-03 LP-OT1-05–03. Available from:
  78. 78.
    Liguori M, Lanari C, Gass H, Rojas P, Elia A, Martinez Vazquez P, et al. Abstract OT1-04-02: Mifepristone treatment for breast cancer patients expressing levels of progesterone receptor isoform A (PRA) higher than those of isoform B (PRB). Cancer Res [Internet]. 2018;78(4 Supplement):OT1-04-02 LP-OT1-04–02. Available from:
  79. 79.
    Pitts T, Tentler J, Elias A, Miller K, Borges V, Gao D, et al. Abstract PD3-16: clinical safety and efficacy of the aurora and angiogenic kinase inhibitor ENMD-2076 in previously treated, locally advanced or metastatic triple-negative breast cancer. Cancer Res 2018;78(4 Supplement):PD3-16-PD3-16.Google Scholar
  80. 80.
    Reuben J, Liu D, Scoggins M, Willey J, Valero V, Dryden M, et al. Abstract OT1-02-01: a phase II study of anti-PD-1 (MK-3475) therapy in patients with metastatic inflammatory breast cancer (MIBC) or non-IBC triple negative breast cancer (non-IBC TNBC) who have achieved clinical response or stable disease to prior chemot. Cancer Res. 2018;78(4 Supplement):OT1-02-01-OT1-02–01.Google Scholar
  81. 81.
    Blackwell K, Traina T, Kim S-B, Tan T, Im Y-H, Dent R, et al. Abstract OT3-04-02: the DORA trial: a non-comparator randomised phase II multi-center maintenance study of olaparib alone or olaparib in combination with durvalumab in platinum treated advanced triple negative breast cancer (TNBC). Cancer Res. 2018;78(4 Supplement):OT3-04-02-OT3-04–02.Google Scholar
  82. 82.
    Reeder-Hayes KE, Carey LA, Sikov WM. Clinical trials in triple negative breast cancer. Breast Dis. 2010;32(1–2):123–36.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gao ZG, Tian L, Hu J, Park IS, Batist G. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release [Internet]. 2011;152(1):84–9.CrossRefGoogle Scholar
  84. 84.
    Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y. Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials [Internet]. 2012;33(27):6495–506.CrossRefGoogle Scholar
  85. 85.
    Blanco E, Sangai T, Hsiao A, Ferrati S, Bai L, Liu X, et al. Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Lett [Internet]. 2013;334(2):245–52.CrossRefGoogle Scholar
  86. 86.
    Kulhari H, Pooja D, Shrivastava S, Kuncha M, Naidu VGM, Bansal V, et al. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep [Internet]. 2016;6:1–13.CrossRefGoogle Scholar
  87. 87.
    Wani MC, Carnahan MA, Oberlies NH, Morgan MT, Grinstaff MW, Kroll DJ, et al. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006;66(24):11913–21.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Desai AM, Baker JR, Thomas TP, Patri AK, Peters JL, Kukowska-Latallo J, et al. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem. 2006;17(5):1109–15.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Belt R, Azarnia N, Winer E, Navari R, Rovira D, Harris L, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer. 2002;94(1):25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Bondarenko IN, Tjulandin SA, Oliynychenko GP, Balashova OI, Yuan Z, Xiu L, et al. Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracyclin. J Clin Oncol. 2009;27(27):4522–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–49.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jin S, Lal R, Lee JH, Karin M, Brammer K, Zhang W, et al. Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 2010;10(12):5088–92.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5(5):3679–92.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Yuan H, Fales AM, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 2012;134(28):11358–61.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bae KH, Lee K, Kim C, Park TG. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials [Internet] 2011;32(1):176–184. Available from: Scholar
  97. 97.
    Liu X, Srinivasan S, Alexander JF, Chiappini C, Ferrari M, Godin B, et al. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater. 2012;22(20):4225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fedoryshin LL, et al. Near-infrared triggered anti-cancer drug release from upconverting nanoparticles. ACS Appl Mater Interfaces. 2014;6(16):13600–6.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gao H, Cao S, Chen C, Cao S, Yang Z, Pang Z, et al. Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine. 2013;8(9):1429–42.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Shi P, Aluri S, Lin YA, Shah M, Edman M, Dhandhukia J, et al. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J Control Release [Internet]. 2013;171(3):330–338. Available from: Scholar
  101. 101.
    Montero AJ, Adams B, Diaz-Montero CM, Glück S. Nab-paclitaxel in the treatment of metastatic breast cancer: a comprehensive review. Expert Rev Clin Pharmacol. 2011;4(3):329–34.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInstitute of Chemical Technology, MatungaMumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInstitute of Chemical Technology, MatungaMumbaiIndia
  3. 3.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations