Toll-Like Receptor-Mediated Endocytosis in Infectious Disease

  • Kritika Gupta
  • Marianne Saldanha
  • Mruganka Parasnis
  • Padma V. Devarajan
  • Ratnesh JainEmail author
  • Prajakta DandekarEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


Toll-like receptors (TLR) present a crucial first line of defense to attack by pathogens. In addition, the diversity and widespread localization of TLRs in the human body make them prime candidates for the development of therapeutics. TLRs are known to function by inducing the release of cytokines that result in an inflammation state. However, this release of cytokines needs to be tightly regulated in order to prevent adverse reactions such as sepsis. In this chapter, we describe the role of TLRs in pathogenesis and present various strategies that have been developed to target TLRs, including formulations and administration routes, with the help of various examples.


Toll-like receptors Infectious diseases Innate and adaptive immunity Pathogenesis Targeted drug delivery 



Aminoalkylglucosaminide 4-phosphates


Antimicrobial peptides


Activator protein 1


Antigen-presenting cells


Bacillus Calmette-Guerin


Cluster of differentiation


Cytosine phosphate guanine






Cylindramatosis protein


Damage-associated molecular pattern


Dendritic cell


Double-stranded RNA


Ebola virus


Extracellular domain


Extracellular signal-regulated kinases


Food and Drug Administration


Gold nanoparticle




Human cytomegalovirus




High-density lipoproteins


Human immunodeficiency virus


High mobility group box 1


Heat-shock protein


Ischemia–reperfusion injury




I Kappa B kinase




Interleukin-1 receptor


Interleukin-1 receptor-associated kinase


Interferon regulatory factor


Immuno-regulatory oligonucleotides




Leucine-rich repeats


MyD88 adaptor-like protein


Mitogen-activated protein kinase


myeloid differentiation factor-2


Major histocompatibility complex


Monophosphoryl lipid


Mouse mammary tumor virus


Messenger RNA


Myeloid differentiation factor 88


Non-anticoagulant heparin nanoparticle


Nuclear factor kappa-light-chain-enhancer of B cells


Natural killer




Non-small-cell lung cancer








Pathogen-associated molecular pattern


Peripheral blood mononuclear cell


Polymorphonuclear leukocytes


Rheumatoid arthritis


Receptor interacting protein-1


Reactive oxygen species


Respiratory syncytial virus


Rous sarcoma virus


Structure–activity relationship


small interfering RNA


Systemic lupus erythematosus


Small molecule inhibitors


Systemic sclerosis


Single-stranded RNA


Tumor-associated carbohydrate antigens


Transforming growth factor-β-activated kinase-1


TRAF family member-associated NF-kappa-B activator 1


Transforming growth factor-β


Toll/interleukin-1 receptor


TIR-domain-containing adaptor protein


Toll-like receptor


Transmembrane domain


Tumor necrosis factor (ligand) superfamily, member 10


Tumor necrosis factor-α


TNF receptor type 1-associated death domain


TNF receptor-associated factor


TRIF-related adaptor molecule


regulatory T cells


Toll-interferon response factor


Viral Inhibitory peptide of TLR-4


Vesicular stomatitis virus


  1. 1.
    Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem. 2007;76:141–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Kitchens RL. Role of CD14 in cellular recognition of bacterial lipopolysaccharides. CD14 in the inflammatory response: Karger Publishers; 2000. p. 61–82. BaselCrossRefGoogle Scholar
  4. 4.
    Juckem LK, Boehme KW, Feire AL, Compton T. Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol. 2008;180(7):4965–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Diebold SS. Recognition of viral single-stranded RNA by Toll-like receptors. Adv Drug Deliv Rev. 2008;60(7):813–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A, et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med. 2003;9(5):525.PubMedCrossRefGoogle Scholar
  7. 7.
    Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5(6):446.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM. Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol. 2007;7(10):1271–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Krutzik SR, Modlin RL, editors. The role of Toll-like receptors in combating mycobacteria. Seminars in immunology. Elsevier; 2004. AmsterdamGoogle Scholar
  10. 10.
    Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci. 1999;96(25):14459–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Akamine M, Higa F, Arakaki N, Kawakami K, Takeda K, Akira S, et al. Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect Immun. 2005;73(1):352–61.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kikuchi T, Kobayashi T, Gomi K, Suzuki T, Tokue Y, Watanabe A, et al. Dendritic cells pulsed with live and dead Legionella pneumophila elicit distinct immune responses. J Immunol. 2004;172(3):1727–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, et al. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun. 2004;72(2):788–94.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Knapp S, Wieland CW, van’t Veer C, Takeuchi O, Akira S, Florquin S, et al. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol. 2004;172(5):3132–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Carty M, Bowie AG. Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol. 2010;161(3):397–406.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sørensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol. 2008;181(12):8604–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Murawski MR, Bowen GN, Cerny AM, Anderson LJ, Haynes LM, Tripp RA, et al. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol. 2009;83(3):1492–500.PubMedCrossRefGoogle Scholar
  18. 18.
    Schabbauer G, Luyendyk J, Crozat K, Jiang Z, Mackman N, Bahram S, et al. TLR4/CD14-mediated PI3K activation is an essential component of interferon-dependent VSV resistance in macrophages. Mol Immunol. 2008;45(10):2790–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J Leukoc Biol. 2001;69(5):691–7.PubMedGoogle Scholar
  20. 20.
    Duffy L, O’Reilly SC. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. Immunotargets Ther. 2016;5:69.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Beutler BA. TLRs and innate immunity. Blood. 2009;113(7):1399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 2007;13(5):552.PubMedCrossRefGoogle Scholar
  24. 24.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135.PubMedCrossRefGoogle Scholar
  25. 25.
    Botos I, Segal DM, Davies DR. The structural biology of Toll-like receptors. Structure. 2011;19(4):447–59.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, et al. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics. 2007;8(1):124.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci. 2005;102(27):9577–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik S-G, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130(6):1071–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Kang JY, Nan X, Jin MS, Youn S-J, Ryu YH, Mah S, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity. 2009;31(6):873–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Leonard JN, Ghirlando R, Askins J, Bell JK, Margulies DH, Davies DR, et al. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci. 2008;105(1):258–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3(2):169.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim HM, Park BS, Kim J-I, Kim SE, Lee J, Oh SC, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130(5):906–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Donnelly MA, Steiner TS. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J Biol Chem. 2002;277:40456.PubMedCrossRefGoogle Scholar
  34. 34.
    Treeby M, Vašl J, Ota P, Friedrich J, Jerala R. Different functional role of domain boundaries of Toll-like receptor 4. Biochem Biophys Res Commun. 2009;381(1):65–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Kruithof EK, Satta N, Liu JW, Dunoyer-Geindre S, Fish RJ. Gene conversion limits divergence of mammalian TLR1 and TLR6. BMC Evol Biol. 2007;7(1):148.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kang JY, Lee J-O. Structural biology of the Toll-like receptor family. Annu Rev Biochem. 2011;80:917–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors—from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell. 2006;125(5):943–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373.CrossRefGoogle Scholar
  40. 40.
    Spohn R, Buwitt-Beckmann U, Brock R, Jung G, Ulmer AJ, Wiesmüller K-H. Synthetic lipopeptide adjuvants and Toll-like receptor 2—structure–activity relationships. Vaccine. 2004;22(19):2494–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Wu W, Li R, Malladi SS, Warshakoon HJ, Kimbrell MR, Amolins MW, et al. Structure− activity relationships in toll-like receptor-2 agonistic diacylthioglycerol lipopeptides. J Med Chem. 2010;53(8):3198–213.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Facchini FA, Zaffaroni L, Minotti A, Rapisarda S, Calabrese V, Forcella M, et al. Structure–activity relationship in monosaccharide-based toll-like receptor 4 (TLR4) antagonists. J Med Chem. 2018;61(7):2895–909.PubMedCrossRefGoogle Scholar
  43. 43.
    Stöver AG, Correia JDS, Evans JT, Cluff CW, Elliott MW, Jeffery EW, et al. Structure-activity relationship of synthetic toll-like receptor 4 agonists. J Biol Chem. 2004;279(6):4440–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Shukla NM, Mutz CA, Malladi SS, Warshakoon HJ, Balakrishna R, David SA. Toll-like receptor (TLR)-7 and-8 modulatory activities of dimeric imidazoquinolines. J Med Chem. 2012;55(3):1106–16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Salunke DB, Yoo E, Shukla NM, Balakrishna R, Malladi SS, Serafin KJ, et al. Structure–activity relationships in human Toll-like receptor 8-active 2, 3-diamino-furo [2, 3-c] pyridines. J Med Chem. 2012;55(18):8137–51.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Patra MC, Choi S. Recent progress in the development of Toll-like receptor (TLR) antagonists. Expert Opin Ther Pat. 2016;26(6):719–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Mistry P, Laird MH, Schwarz RS, Greene S, Dyson T, Snyder GA, et al. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci. 2015;112:5455. 201422576.PubMedCrossRefGoogle Scholar
  48. 48.
    Krishnan J, Lee G, Choi S. Drugs targeting Toll-like receptors. Arch Pharm Res. 2009;32(11):1485.PubMedCrossRefGoogle Scholar
  49. 49.
    Opipari A, Boguski M, Dixit V. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem. 1990;265(25):14705–8.PubMedGoogle Scholar
  50. 50.
    Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol. 2005;6(6):571.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lamphier M, Zheng W, Latz E, Spyvee M, Hansen H, Rose J, et al. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol Pharmacol. 2014;85(3):429–40. Scholar
  52. 52.
    Thompson AD, Dugan A, Gestwicki JE, Mapp AK. Fine-tuning multiprotein complexes using small molecules. ACS Chem Biol. 2012;7(8):1311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yang H, Kozicky L, Saferali A, Fung S-Y, Afacan N, Cai B, et al. Endosomal pH modulation by peptide-gold nanoparticle hybrids enables potent anti-inflammatory activity in phagocytic immune cells. Biomaterials. 2016;111:90–102.PubMedCrossRefGoogle Scholar
  54. 54.
    Hoque R, Farooq A, Malik A, Trawick BN, Berberich DW, McClurg JP, et al. A novel small-molecule enantiomeric analogue of traditional (−)-morphinans has specific TLR9 antagonist properties and reduces sterile inflammation-induced organ damage. J Immunol. 2013:1202184.Google Scholar
  55. 55.
    Karlsson L, Sun S, Rao NL, Venable J, Thurmond R. TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy). 2007;6(4):223–35.Google Scholar
  56. 56.
    Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, et al. Novel drugs targeting Toll-like receptors for antiviral therapy. Futur Virol. 2014;9(9):811–29.CrossRefGoogle Scholar
  57. 57.
    Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14(11):2592–603.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Majer O, Liu B, Barton GM. Nucleic acid-sensing TLRs: trafficking and regulation. Curr Opin Immunol. 2017;44:26–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Evans JT, Cluff CW, Johnson DA, Lacy MJ, Persing DH, Baldridge JR. Enhancement of antigen-specific immunity via the TLR4 ligands MPL™ adjuvant and Ribi. 529. Expert Rev Vaccines. 2003;2(2):219–29.PubMedCrossRefGoogle Scholar
  60. 60.
    Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471.PubMedCrossRefGoogle Scholar
  61. 61.
    Hennessy EJ, Parker AE, O’neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9(4):293.PubMedCrossRefGoogle Scholar
  62. 62.
    Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine. 2008;26(52):6777–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol. 2006;176(12):7335–45.PubMedCrossRefGoogle Scholar
  64. 64.
    Wille-Reece U, Flynn BJ, Loré K, Koup RA, Miles AP, Saul A, et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J Exp Med. 2006;203(5):1249–58.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Metzger JW, Beck-Sickinger AG, Loeit M, Eckert M, Bessler WG, Jung G. Synthetic S-(2, 3-dihydroxypropyl)-cysteinyl peptides derived from the N-terminus of the cytochrome subunit of the photoreaction centre of Rhodopseudomonas viridis enhance murine splenocyte proliferation. J Pept Sci. 1995;1(3):184–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Hewitt MC, Seeberger PH. Solution and solid-support synthesis of a potential leishmaniasis carbohydrate vaccine. J Org Chem. 2001;66(12):4233–43.PubMedCrossRefGoogle Scholar
  67. 67.
    Cluff CW, Baldridge JR, Stöver AG, Evans JT, Johnson DA, Lacy MJ, et al. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect Immun. 2005;73(5):3044–52.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Huleatt JW, Jacobs AR, Tang J, Desai P, Kopp EB, Huang Y, et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine. 2007;25(4):763–75.PubMedCrossRefGoogle Scholar
  69. 69.
    Bargieri DY, Rosa DS, Braga CJ, Carvalho BO, Costa FT, Espíndola NM, et al. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin. Vaccine. 2008;26(48):6132–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Braga CJ, Massis LM, Sbrogio-Almeida ME, Alencar BC, Bargieri DY, Boscardin SB, et al. CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein. Vaccine. 2010;28(5):1373–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Delaney KN, Phipps JP, Johnson JB, Mizel SB. A recombinant flagellin-poxvirus fusion protein vaccine elicits complement-dependent protection against respiratory challenge with vaccinia virus in mice. Viral Immunol. 2010;23(2):201–10.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine. 2008;26(2):201–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur J Immunol. 2007;37(8):2063–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunology. 2016;5(5):e85.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Averett DR. Administration of TLR7 ligands and prodrugs thereof for treatment of infection by hepatitis C virus. Google Patents; 2009.Google Scholar
  76. 76.
    Li F, Shen A, Amanullah A. Cell culture processes in monoclonal antibody production. Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing. 2010:1–38.Google Scholar
  77. 77.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Foit L, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials. 2016;100:67–75.PubMedCrossRefGoogle Scholar
  79. 79.
    Rodriguez Lavado J, Sestito SE, Cighetti R, Aguilar Moncayo EM, Oblak A, Lainšček D, et al. Trehalose-and glucose-derived glycoamphiphiles: small-molecule and nanoparticle Toll-like receptor 4 (TLR4) modulators. J Med Chem. 2014;57(21):9105–23.PubMedCrossRefGoogle Scholar
  80. 80.
    Foster SL, Medzhitov R. Gene-specific control of the TLR-induced inflammatory response. Clin Immunol. 2009;130(1):7–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Beeson PB. Tolerance to bacterial pyrogens: II. Role of the reticulo-endothelial system. J Exp Med. 1947;86(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hoffman ES, Smith RE, Renaud RC Jr. TLR-targeted therapeutics: Nature Publishing Group; 2005. LondonGoogle Scholar
  84. 84.
    Huang S-W, Kao J-K, Wu C-Y, Wang S-T, Lee H-C, Liang S-M, et al. Targeting aerobic glycolysis and HIF-1α expression enhance imiquimod-induced apoptosis in cancer cells. Oncotarget. 2014;5(5):1363.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lehtinen M, Paavonen J. Sound efficacy of prophylactic HPV vaccination: basics and implications. Oncoimmunology. 2012;1(6):995–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, et al. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology. 2016;5(3):e1088631.PubMedCrossRefGoogle Scholar
  87. 87.
    Sester DP, Naik S, Beasley SJ, Hume DA, Stacey KJ. Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J Immunol. 2000;165(8):4165–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Bourquin C, Schmidt L, Lanz A-L, Storch B, Wurzenberger C, Anz D, et al. Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7. J Immunol. 2009;183(10):6078–86.PubMedCrossRefGoogle Scholar
  89. 89.
    Harrison LI, Astry C, Kumar S, Yunis C. Pharmacokinetics of 852A, an imidazoquinoline Toll-like receptor 7-specific agonist, following intravenous, subcutaneous, and oral administrations in humans. J Clin Pharmacol. 2007;47(8):962–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Dudek AZ, Yunis C, Harrison LI, Kumar S, Hawkinson R, Cooley S, et al. First in human phase I trial of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin Cancer Res. 2007;13(23):7119–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Thompson K, Strayer D, Salvato P, Thompson C, Klimas N, Molavi A, et al. Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI: polyC12U in the treatment of HIV infection. Eur J Clin Microbiol Infect Dis. 1996;15(7):580–7.PubMedCrossRefGoogle Scholar
  92. 92.
    O’donnell MA, Krohn J, DeWOLF WC. Salvage intravesical therapy with interferon-α2B plus low dose bacillus Calmette-Guerin is effective in patients with superficial bladder cancer in whom bacillus Calmette-Guerin alone previously failed. J Urol. 2001;166(4):1300–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Cui G, Ye X, Zuo T, Zhao H, Zhao Q, Chen W, et al. Chloroquine pretreatment inhibits toll-like receptor 3 signaling after stroke. Neurosci Lett. 2013;548:101–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Gómez-Guzmán M, Jiménez R, Romero M, Sánchez M, Zarzuelo MJ, Gómez-Morales M, et al. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension. 2014;64(2):330–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Hatterer E, Shang L, Simonet P, Herren S, Daubeuf B, Teixeira S, et al. A specific anti-citrullinated protein antibody profile identifies a group of rheumatoid arthritis patients with a toll-like receptor 4-mediated disease. Arthritis Res Ther. 2016;18(1):224.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhu F, Yu D, Kandimalla E, La Monica N, Agrawal S, editors. Treatment with IMO-3100, a novel TLR7 and TLR9 dual antagonist, inhibits disease development in lupus prone NZBW/F1 mice. Keystone Symposia: Dendritic Cells and the Initiation of Adaptive Immunity; 2011.Google Scholar
  97. 97.
    Lynn M, Wong YN, Wheeler JL, Kao RJ, Perdomo CA, Noveck R, et al. Extended in vivo pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia. J Pharmacol Exp Ther. 2004;308(1):175–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Readett DR, Denis LJ, Krieg AM, Benner RJ, Hanson DC. PD3-1-6: PF-3512676 (CPG 7909), a toll-like receptor 9 agonist-status of development for non-small cell lung cancer (NSCLC). J Thorac Oncol. 2007;2(8):S461.CrossRefGoogle Scholar
  99. 99.
    Gao W, Xiong Y, Li Q, Yang H. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol. 2017;8:508.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Engel AL, Holt GE, Lu H. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert Rev Clin Pharmacol. 2011;4(2):275–89.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Kritika Gupta
    • 1
  • Marianne Saldanha
    • 3
  • Mruganka Parasnis
    • 3
  • Padma V. Devarajan
    • 2
  • Ratnesh Jain
    • 3
    Email author
  • Prajakta Dandekar
    • 2
    Email author
  1. 1.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia
  3. 3.Department of Chemical EngineeringInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations