Advertisement

Wise Objects for IoT (WIoT): Software Framework and Experimentation

  • Ilham AllouiEmail author
  • Eric Benoit
  • Stéphane Perrin
  • Flavien Vernier
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1077)

Abstract

Despite their expansion, Internet of Things (IoT) technologies remain young and require software technologies to ensure information management in order to deliver sophisticated services to their users. Users of IOT technologies particularly need systems that adapt to their use and not the reverse. To meet those requirements, we enriched our object oriented framework WOF (Wise Object Framework) with a communication structure to interconnect WOs (Wise Objects) and IoT. Things from IoT are then able to learn, monitor and analyze data in order to be able to adapt their behavior. In this paper, we recall the underlying concepts of our framework and then focus on the interconnection between WOs and IoT. This is enabled by a software bus-based architecture and IoT related communication protocols. We designed a dedicated communication protocol for IoT objects. We show how IoT objects can benefit from learning, monitoring and analysis mechanisms provided by WOF to identify usual behavior of a system and to detect unusual behavior. We illustrate our approach through two case studies in home automation. The first shows how a wise smart presence sensor learns on a classroom occupation. The second shows how a wise system helps us to see correlation among several WOs.

Keywords

Wise object IoT Software architecture Communication Knowledge analysis 

References

  1. 1.
    Aarts, H., Verplanken, B., Knippenberg, A.: Predicting behavior from actions in the past: repeated decision making or a matter of habit? J. Appl. Soc. Psychol. 28(15), 1355–1374 (2006).  https://doi.org/10.1111/j.1559-1816.1998.tb01681.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-1816.1998.tb01681.xCrossRefGoogle Scholar
  2. 2.
    Alloui, I., Benoit, E., Perrin, S., Vernier, F.: Wiot: interconnection between wise objects and IOT. In: Proceedings of the 13th International Conference on Software Technologies, ICSOFT, vol. 1, pp. 494–505. INSTICC, SciTePress (2018).  https://doi.org/10.5220/0006870205280539
  3. 3.
    Alloui, I., Esale, D., Vernier, F.: Wise objects for calm technology. In: 10th International Conference on Software Engineering and Applications (ICSOFT-EA 2015), Colmar, France, pp. 468–471. SciTePress, July 2015.  https://doi.org/10.5220/0005560104680471, https://hal.archives-ouvertes.fr/hal-01226219
  4. 4.
    Alloui, I., Vernier, F.: WOF: towards behavior analysis and representation of emotions in adaptive systems. In: Cabello, E., Cardoso, J., Maciaszek, L.A., van Sinderen, M. (eds.) ICSOFT 2017. CCIS, vol. 868, pp. 244–267. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93641-3_12CrossRefGoogle Scholar
  5. 5.
    Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series changepoint detection. Knowl. Inf. Syst. 51(2), 339–367 (2017).  https://doi.org/10.1007/s10115-016-0987-zCrossRefGoogle Scholar
  6. 6.
    Brun, Y., et al.: A design space for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 33–50. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35813-5_2CrossRefGoogle Scholar
  7. 7.
    IEC: IoT 2020: Smart and Secure IoT Platform: White Paper. International Electrotechnical Commission (2016). https://books.google.fr/books?id=aItwAQAACAAJ
  8. 8.
    Moreaux, P., Sartor, F., Vernier, F.: An effective approach for home services management. In: 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 47–51. IEEE, Garching, February 2012.  https://doi.org/10.1109/PDP.2012.45
  9. 9.
    Röcker, C., Ziefle, M., Holzinger, A.: Social inclusion in ambient assisted living environments: home automation and convenience services for elderly users. In: International Conference on Artificial Intelligence (ICAI 2011), pp. 55–59. CSERA Press, New York (2011).  https://doi.org/10.1007/978-3-319-66808-6_17Google Scholar
  10. 10.
    Singh, D., Kropf, J., Hanke, S., Holzinger, A.: Ambient assisted living technologies from the perspectives of older people and professionals. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp. 255–266. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66808-6_17CrossRefGoogle Scholar
  11. 11.
    Vishwajeet, H.B., Sanjeev, W.: i-learning IOT: an intelligent self learning system for home automation using IOT. In: International Conference on Communications and Signal Processing (ICCSP), April 2015.  https://doi.org/10.1109/ICCSP.2015.7322825
  12. 12.
    Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35813-5_4CrossRefGoogle Scholar
  13. 13.
    Yassein, M.B., Shatnawi, M.Q., Aljwarneh, S., Al-Hatmi, R.: Internet of things: survey and open issues of MQTT protocol. In: 2017 International Conference on Engineering MIS ICEMIS, pp. 1–6, May 2017.  https://doi.org/10.1109/ICEMIS.2017.8273112
  14. 14.
    Z-Vawe: Z-vawe aliance (2018). https://z-wavealliance.org/. Accessed 1 Apr 2018
  15. 15.
    Zigbee: Zigbee aliance (2018). http://www.zigbee.org/. Accessed 1 Apr 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Savoie Mont Blanc - LISTICAnnecyFrance

Personalised recommendations