Optical Axis Estimation Method Using Binocular Free Space Optics

  • Kouhei Yamamoto
  • Rintaro Simogawa
  • Kiyotaka Izumi
  • Takeshi TsujimuraEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1035)


Based on active free space optics, we designed a binocular device with independent receiver and transmitter using positioning photodiode, quadrant photodiode, and voice coil motor. We proposed the alignment method using five photodiodes for the method of beam alignment. The estimation error of alignment was 30.1 mm. Basic communication experiments were conducted using two binocular devices. It is proved that free space optics communication can be performed by the designed active free space optics device.



This work is supported by Strategic Information and Communications R&D Promotion Program (SCOPE) of Ministry of Internal Affairs and Communications, Japan.


  1. 1.
    Kantaros, Y., Zavlanos, M.M.: Distributed intermittent connectivity control of mobile robot networks. IEEE Trans. Autom. Control 62(7), 3109–3121 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Saulnier, K., Saldaña, D., Prorok, A., Pappas, G.J., Kumar, V.: Resilient flocking for mobile robot teams. IEEE Robot. Autom. Lett. 2(2), 1039–1046 (2017)CrossRefGoogle Scholar
  3. 3.
    Wu, C., Chu, X., Wei, Y., Cui, X.: Regional targeting based millimeter-wave beamforming for robot communication in 5G scenes. In: International Conference on Artificial Intelligence, Automation and Control Technologies, Article No. 14 (2017)Google Scholar
  4. 4.
    Pratt, W.K.: Laser Communication Systems, p. 196. Wiley, Hoboken (1969)Google Scholar
  5. 5.
    Ueno, Y., Nagata, R.: An optical communication system using envelope modulation. IEEE Trans. Commun. 20(4), 813 (1972)CrossRefGoogle Scholar
  6. 6.
    Willebrand, H., Ghuman, B.S.: Free-Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing, Indianapolis (1999)Google Scholar
  7. 7.
    Nykolak, G., et al.: Update on 4x2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance. In: Optical Wireless Communications II, Proceedings of SPIE, vol. 3850, pp. 11–19 (1999)Google Scholar
  8. 8.
    Dodley, J.P., et al.: Free space optical technology and distribution architecture for broadband metro and local services. In: Optical Wireless Communications III, Proceedings of SPIE, vol. 4214, pp. 72–85 (2000)Google Scholar
  9. 9.
    Wang, J., Kahn, J.M.: Acquisition in short-range free-space optical communication. In: Optical Wireless Communications V, Proceedings of SPIE, vol. 4873, pp. 121–132 (2002)Google Scholar
  10. 10.
    O’Brien, D.C., et al.: Integrated transceivers for optical wireless communications. IEEE J. Sel. Topics Quantum Electron. 11(1), 173–183 (2005)CrossRefGoogle Scholar
  11. 11.
    Minch, J.R., et al.: Adaptive transceivers for mobile free-space optical communications. In: IEEE Military Communications Conference, pp. 1–5 (2006)Google Scholar
  12. 12.
    Ghimire, R., Mohan, S.: Auto tracking system for free space optical communications. In: 13th International Conference on Transparent Optical Networks, pp. 1–3 (2011)Google Scholar
  13. 13.
    Yamashita, T., et al.: The new tracking control system for Free-Space Optical Communications. In: International Conference on Space Optical Systems and Applications, pp. 122–131 (2011)Google Scholar
  14. 14.
    Vitasek, J., et al.: Misalignment loss of free space optic link. In: 16th International Conference on Transparent Optical Networks, pp. 1–5 (2014)Google Scholar
  15. 15.
    Dubey, S., Kumar, S., Mishra, R.: Simulation and performance evaluation of free space optic transmission system. In: International Conference on Computing for Sustainable Global Development, pp. 850–855 (2014)Google Scholar
  16. 16.
    Wang, Q., Nguyen, T., Wang, A.X.: Channel capacity optimization for an integrated Wi-Fi and free-space optic communication system. In: 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 327–330 (2014)Google Scholar
  17. 17.
    Kaur, P., Jain, V.K., Kar, S.: Capacity of free space optical links with spatial diversity and aperture averaging. In: 27th Biennial Symposium on Communications, pp. 14–18 (2014)Google Scholar
  18. 18.
    Tsujimura, T., Yoshida, K.: Active free space optics systems for ubiquitous user networks. In: Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (2004)Google Scholar
  19. 19.
    Tsujimura, T., Yoshida, K., Shiraki, K., Sankawa, I.: 1310/ 1550 nm SMF-FSO-SMF no-repeater transmission technique with semi-active FSO Nodes. In: 33st European Conference and Exhibition on Optical Communication, pp. 189–190 (2007)Google Scholar
  20. 20.
    Tanaka, K., Tsujimura, T., Yoshida, K., Katayama, K., Azuma, Y.: Frame-loss-free line switching method for in-service optical access network using interferometry line length measurement. In: Optical Fiber Communication Conference, postdeadline PDPD6 (2009)Google Scholar
  21. 21.
    Tanaka, K., Tsujimura, T., Yoshida, K., Katayama, K., Azuma, Y.: Frame-loss-free optical line switching system for in-service optical network. J. Lightwave Technol. 28, 539–546 (2009)CrossRefGoogle Scholar
  22. 22.
    Tsujimura, T., Tanaka, K., Yoshida, K., Katayama, K., Azuma, Y.: Infallible layer-one protection switching technique for optical fiber network. In: 14th European Conference on Networks and Optical Communications (2009)Google Scholar
  23. 23.
    Tsujimura, T., Yoshida, K., Tanaka, K.: Length measurement for optical transmission line using interferometry. Interferometry. InTech (2012). ISBN 978-953-308-459-6Google Scholar
  24. 24.
    Yoshida, K., Tanaka, K., Tsujimura, T., Azuma, Y.: Assisted focus adjustment for free space optics system coupling single-mode optical fibers. IEEE Trans. Ind. Electron. 60, 5306–5314 (2013)CrossRefGoogle Scholar
  25. 25.
    Tsujimura, T., Muta, S., Masaki, Y., Izumi, K.: Initial alignment scheme and tracking control technique of free space optics laser beam. In: OPICS 2014 (2014)Google Scholar
  26. 26.
    Tsujimura, T., Izumi, K., Yoshida, K.: Optical axis adjustment of laser beam transmission system. In: Fifth International Conference on Digital Information Processing and Communications, pp. 13–18 (2015)Google Scholar
  27. 27.
    Tsujimura, T., Suito, Y., Yamamoto, K., Izumi, K.: Spacial laser beam control system for optical robot intercommunication. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (2018)Google Scholar
  28. 28.
    Tsujimura, T., Izumi1, K., Yoshida, K.: Collaborative all-optical alignment system for free space optics communication. In: INCoS 2018, LNDECT 23, pp. 146–157 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kouhei Yamamoto
    • 1
  • Rintaro Simogawa
    • 1
  • Kiyotaka Izumi
    • 1
  • Takeshi Tsujimura
    • 1
    Email author
  1. 1.Saga UniversitySagaJapan

Personalised recommendations