Skip to main content

Sequentialising Nested Systems

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2019)

Abstract

In this work, we investigate the proof theoretic connections between sequent and nested proof calculi. Specifically, we identify general conditions under which a nested calculus can be transformed into a sequent calculus by restructuring the nested sequent derivation (proof) and shedding extraneous information to obtain a derivation of the same formula in the sequent calculus. These results are formulated generally so that they apply to calculi for intuitionistic, normal modal logics and negative modalities.

Funded by the project Reasoning Tools for Deontic Logic and Applications to Indian Sacred Texts, CAPES, CNPq, START, FWF-ANR and TICAMORE (I 2982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that, since in basic nested systems nested-like rules must have exactly one nesting in the premises or conclusion, only one hole is enough for describing both schemas and applications of rules. Compare with, e.g., the schematic nested rule for \(\mathsf {5}\) in [5].

  2. 2.

    Throughout, we will use n as a superscript, etc for indicating “nested”. Hence e.g., \(\rightarrow _R^n\) will be the designation of the implication right rule in the nesting framework.

  3. 3.

    We observe that, in [11] the basic sequent systems for \(\mathsf {K}\mathsf {B}\) and \(\mathsf {S5}\) were proved to be analytic (although not cut-free).

References

  1. Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–140 (1991). https://doi.org/10.1016/0890-5401(91)90023-U

    Article  MathSciNet  Google Scholar 

  2. Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Logic: From Foundations to Applications (Staffordshire, 1993), Oxford Science Publishing, pp. 1–32. Oxford University Press, New York (1996)

    Google Scholar 

  3. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications, London (2006)

    MATH  Google Scholar 

  4. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems for intuitionistic modal logics. In: FSCD, pp. 16:1–16:18 (2016)

    Google Scholar 

  6. Fitting, M.: Proof methods for modal and intuitionistic logics. In: Synthese Library, vol. 169. Reidel Publishing Company, Dordrecht (1983)

    Google Scholar 

  7. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Form. Log. 55(1), 41–61 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gentzen, G.: Investigations into logical deduction. In: The Collected Papers of Gerhard Gentzen, pp. 68–131 (1969)

    Google Scholar 

  9. Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_5

    Chapter  Google Scholar 

  10. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53(1), 119–135 (1994)

    Article  MathSciNet  Google Scholar 

  11. Lahav, O., Avron, A.: A unified semantic framework for fully structural propositional sequent systems. ACM Trans. Comput. Log. 14(4), 27:1–27:33 (2013). http://doi.acm.org/10.1145/2528930

    Article  MathSciNet  Google Scholar 

  12. Lahav, O., Marcos, J., Zohar, Y.: Sequent systems for negative modalities. Logica Universalis 11(3), 345–382 (2017). https://doi.org/10.1007/s11787-017-0175-2

    Article  MathSciNet  Google Scholar 

  13. Lellmann, B.: Sequent calculi with context restrictions and applications to conditional logic. Ph.D. thesis, Imperial College London (2013). http://hdl.handle.net/10044/1/18059

  14. Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_10

    Chapter  MATH  Google Scholar 

  15. Lellmann, B., Pattinson, D.: Correspondence between modal Hilbert axioms and sequent rules with an application to S5. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp. 219–233. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40537-2_19

    Chapter  MATH  Google Scholar 

  16. Lellmann, B., Pimentel, E.: Modularisation of sequent calculi for normal and non-normal modalities. ACM Trans. Comput. Log. 29 (2019). Article No. 7

    Google Scholar 

  17. Maehara, S.: Eine Darstellung der intuitionistischen Logik in der klassischen. Nagoya Math. J. 7, 45–64 (1954)

    Article  MathSciNet  Google Scholar 

  18. Mints, G.: Indexed systems of sequents and cut-elimination. J. Philos. Logic 26(6), 671–696 (1997)

    Article  MathSciNet  Google Scholar 

  19. Pimentel, E.: A semantical view of proof systems. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 61–76. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_3

    Chapter  Google Scholar 

  20. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9084-4_3

    Chapter  Google Scholar 

  21. Pottinger, G.: Uniform, cut-free formulations of \(t\), \(s4\) and \(s5\) (abstract). J. Symbolic Logic 48, 900–901 (1983)

    Google Scholar 

  22. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5_14

    Chapter  Google Scholar 

  23. Troelstra, A.S., Schwichtenberg, H.: and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  24. Luca, V.: Labelled Non-classical Logics. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  25. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8. Springer, Heidelberg (2002). https://doi.org/10.1007/978-94-010-0387-2_2

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Agata Ciabattoni for our fruitful discussions and the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Pimentel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pimentel, E., Ramanayake, R., Lellmann, B. (2019). Sequentialising Nested Systems. In: Cerrito, S., Popescu, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2019. Lecture Notes in Computer Science(), vol 11714. Springer, Cham. https://doi.org/10.1007/978-3-030-29026-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29026-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29025-2

  • Online ISBN: 978-3-030-29026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics