Advertisement

Herbrand Constructivization for Automated Intuitionistic Theorem Proving

  • Gabriel EbnerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11714)

Abstract

We describe a new method to constructivize proofs based on Herbrand disjunctions by giving a practically effective algorithm that converts (some) classical first-order proofs into intuitionistic proofs. Together with an automated classical first-order theorem prover such a method yields an (incomplete) automated theorem prover for intuitionistic logic. Our implementation of this prover approach, Slakje, performs competitively on the ILTP benchmark suite for intuitionistic provers: it solves 1674 out of 2670 problems (1290 proofs and 384 claims of non-provability) with Vampire as a backend, including 800 previously unsolved problems.

Notes

Acknowledgements

The author would like to thank the anonymous reviewers for their suggestions which have led to a considerable improvement of this paper. This work has been supported by the Vienna Science and Technology Fund (WWTF) project VRG12-004.

References

  1. 1.
    Baaz, M., Hetzl, S., Weller, D.: On the complexity of proof deskolemization. J. Symb. Log. 77(2), 669–686 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)Google Scholar
  3. 3.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development – Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07964-5CrossRefzbMATHGoogle Scholar
  4. 4.
    Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844–852 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24364-6_2CrossRefGoogle Scholar
  6. 6.
    Bove, A., Dybjer, P., Norell, U.: A brief overview of agda – a functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03359-9_6CrossRefGoogle Scholar
  7. 7.
    Buss, S.R.: On Herbrand’s theorem. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 195–209. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60178-3_85CrossRefGoogle Scholar
  8. 8.
    Cauderlier, R.: A rewrite system for proof constructivization. In: Dowek, G., Licata, D.R., Alves, S. (eds.) 11th Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. LFMTP, pp. 2:1–2:7. ACM (2016)Google Scholar
  9. 9.
    Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 622–637. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48899-7_43CrossRefGoogle Scholar
  10. 10.
    Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory. J. Autom. Reason. 61(1–4), 423–453 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dunchev, C., et al.: PROOFTOOL: a GUI for the GAPT framework. In: Kaliszyk, C., Lüth, C. (eds.) Proceedings 10th International Workshop On User Interfaces for Theorem Provers (UITP) 2012. EPTCS, vol. 118, pp. 1–14 (2012)Google Scholar
  12. 12.
    Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Ann. Pure Appl. Log. 166(6), 665–700 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ebner, G.: Extracting expansion trees from resolution proofs with splitting and definitions (2018). Preprint https://gebner.org/pdfs/2018-01-29_etimport.pdf
  14. 14.
    Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quantified lemmas. J. Autom. Reason. 63(1), 95–126 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 293–301. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_20CrossRefGoogle Scholar
  16. 16.
    Gilbert, F.: Automated constructivization of proofs. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 480–495. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54458-7_28CrossRefGoogle Scholar
  17. 17.
    Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Université de Paris (1930)Google Scholar
  18. 18.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  20. 20.
    Maehara, S.: Eine Darstellung der intuitionistischen Logik in der Klassischen. Nagoya Math. J. 7, 45–64 (1954)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/
  22. 22.
    McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the polarized inverse method. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 230–244. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_19CrossRefGoogle Scholar
  23. 23.
    Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mints, G.: Gentzen-type systems and resolution rules part I propositional logic. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-52335-9_55CrossRefGoogle Scholar
  25. 25.
    Mints, G.: Gentzen-type system and resolution rules. Part II: Propositional logic. In: Logic Colloquium 1990 (1993)Google Scholar
  26. 26.
    de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_26CrossRefGoogle Scholar
  27. 27.
    Negri, S.: Glivenko sequent classes in the light of structural proof theory. Arch. Math. Log. 55(3–4), 461–473 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Orevkov, V.P.: On Glivenko sequent classes. Trudy Matematicheskogo Instituta imeni V. A. Steklova 98, 131–154 (1968)Google Scholar
  29. 29.
    Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–261. Springer, Heidelberg (2005).  https://doi.org/10.1007/11554554_19CrossRefGoogle Scholar
  30. 30.
    Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_23CrossRefGoogle Scholar
  31. 31.
    Pavlov, V., Pak, V.: WhaleProver: first-order intuitionistic theorem prover based on the inverse method. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 322–336. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74313-4_23CrossRefGoogle Scholar
  32. 32.
    Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom. Reason. 38(1–3), 261–271 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Reis, G.: Importing SMT and connection proofs as expansion trees. In: Fourth Workshop on Proof eXchange for Theorem Proving, PxTP, pp. 3–10 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  35. 35.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study (2013). https://homotopytypetheory.org/book
  37. 37.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  38. 38.
    Voronkov, A.: Proof-search in intuitionistic logic with equality, or back to simultaneous rigid E-unification. J. Autom. Reason. 30(2), 121–151 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_46CrossRefGoogle Scholar
  40. 40.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TU WienViennaAustria

Personalised recommendations