Astrovirology, Astrobiology, Artificial Intelligence: Extra-Solar System Investigations

  • Paul ShapshakEmail author


This chapter attempts to encompass and tackle a large problem in Astrovirology and Astrobiology. There is a huge anthropomorphic prejudice that although life is unlikely, the just-right Goldilocks terrestrial conditions mean that the just-right balance of minerals and basic small molecules inevitably result in life as we know it throughout our solar system, galaxy, and the rest of the universe. Moreover, when such conditions on planets such as ours may not be quite right for the origin of life, it is popularly opined that asteroids and comets magically produce life or at the very least, the important, if not crucial components of terrestrial life so that life then blooms, when their fragments cruise the solar system, stars, and galaxies, and plummet onto appropriately bedecked planets and moons.

It is no longer extraordinary to detect extraterrestrial solar systems. Moreover, since extra-solar system space exploration has commenced, this provides the problem of detecting life with enhanced achievability. Small organisms, which replicate outside of a living cell or host, would not be catalogued as viruses. How about viruses that cohabit with life? On the Earth, viruses are a major, if underestimated, condition of life – will that be the case elsewhere? Detection of extra-solar system viruses, if they exist, requires finding life, since viruses necessitate life to replicate. (It should be noted, though, that viruses could be detected through various types of portable ultra-microscopes, including Electron Microscopes (EM) (scanning and transmission) as well as Atomic Force Microscopes (AFM).) However, extra-solar system detection of life does not oblige that viruses exist ubiquitously. Viruses are important potential components of biospheres because of their multiple interactions and influence on evolution, although viruses are small and obligatory parasitic. In addition, nanotechnology – living or replicating nano-synthetic machine organisms might also be present out there, and require consideration as well. An imposing caveat is that, if found, could some extraterrestrial viruses and synthetic nanotechnological microorganisms infect humans?

Possibly, intelligence and cognition may at times be contemporaneous with life. Concomitantly, life and viruses that may be detected, could well be impacted upon by intelligences existing on such exoplanets (and vice versa). Coming to an understanding of the plurality of extraterrestrial intelligence is an optimal objective, in order to avoid causing harm on exoplanets, as well as avoiding conflict and possible human devastation. This is especially the case if we encounter greatly advanced galactic-level civilizations, compared to terrestrial civilizations. Their machine and bionic technologies on the Dyson engineering civilization scale may be prominently superior to ours; their biological expertise may be similarly critically radical. For example, they may use viruses for purposes for which we are barely aware, and which could be utterly deadly for humans.

A series of steps is being taken in space exploration. Scientists hypothesize and claim that types of life may be near the Earth, in the solar system, and outside the solar system, similar to ours in the sense that only such conditions, Goldilocks conditions, are key sine qua non requirements, based on our terrestrial chemistry and biochemistry. If detected within the solar system, will life or its remnants resemble terrestrial life? Outside the solar system a similar chauvinism exists, although the likelihood for life, in any event, remains probably low, according to more cautious approaches to the problem. The study of our solar system includes planets, asteroids, comets, and other planetesimals that have been in overall contiguity during several billion years; anthropomorphisms claims life consequently has been developing along terrestrial-type mechanisms. However, a non-anthropomorphic view would surmise, probably not, especially for extra-solar system locales. The prime warning and admonition in all these deliberations is the contamination and damage, which current and past practice and procedures has caused and continues, due to insufficient biocontainment concepts and technology to date.

Advances in the development of robotics, artificial intelligence (AI), and high capacity ultrafast quantum computers (QC) greatly enhance the sophisticated control and logical development of extra-solar system studies. Consequently, future long-range manned space exploration seems unwarranted. Clearly, reduced dangers to human health and safety, will result from the use of intelligent machine-based investigations and besides, with increased cost-effectiveness. Space exploration comes at great cost to humanity as a whole and utilizes global resources. Consequently, appropriate organizational measures and planning/cooperation need to be in place. Moreover, the bottom line is that despite all the slogans and claims, there have been next to no financial benefits to our planet as a whole. Such financial and heedless difficulties need to be addressed, the sooner the better. In addition, prior to exposure to exoplanetary life, deep understanding of the problems of infectious diseases and immune dysfunction risks are needed. In addition, global efforts should avoid serendipity and stochasticity as this work should be directed with long-term organization, commitment, scientific, and technological methodology. This chapter briefly reviews such questions assuming a new paradigm for oversight of extrasolar system viral investigations including intelligence and life. Finances are included as an essential adjunct.


Virus Life Intelligence Cognition Astrovirology Astrobiology Exobiology Extreme environments and caves Infectious disease Isotope-effect Isotope-radioisotope quantification and ratio Chemical composition Detection Carbon Nitrogen Oxygen Sulfur Selenium Silicon Fractal Thermodynamics Entropy Enthalpy Sagan Anaxagoras Arrhenius Schrodinger Gibbs Maxwell Boltzmann Fermi Feynman von Neumann Majorana Margulies Extra-solar system life Goldilocks Through the looking glass paradigm Enceladus Europa Mars Contamination Feed-back contamination BSL-4 Genetics Inheritance Biological hybrid Propagatory system DNA sequencing Genome Evolution Robots Nanotechnology Atomic force microscopes (AFM) Laser communications Gravitational lens General relativity Neutrino Artificial intelligence (AI) Quantum computers (QC) NASA CDC NIH 



Conversations and personal communications are acknowledged: Gilbert Baumslag (Institute for Advanced Study, Princeton, New Jersey); Charles Smith (Princeton University, Princeton, New Jersey); Bishun Khare, Thomas Gold, Frank Drake, and Carl Sagan (Center for Radiophysics and Space Research, Cornell University, Ithaca, NY); Andras Pellionisz (Mountain View, CA); G Rajasekaran, (Institute of Mathematical Sciences, Chennai, India); Andre de Gouvea (Northwestern University, Evanston, IL); Martin Pohl (ESA, Zurich, Switzerland); and Robert Wagoner (Stanford University, Palo Alto, CA).

Conflicts of Interest

The author reports no conflicts of interest and also that no robots, AI’s, nor QC’s were harmed during writing this chapter.


  1. 1.
  2. 2.
    Space Debris Remediation: an International Relations Approach DS, Turner EL. Bayesian analysis of the astrobiological implications of life’s early emergence on Earth. Proc Natl Acad Sci U S A. 2012;109:395–400.PubMedCrossRefGoogle Scholar
  3. 3.
    NASA Office of Inspector General Annual report, 2018.
  4. 4.
    Bohlmann UM, Burger MJF. Anthropomorphism in the search for extra-terrestrial intelligence – the limits of cognition? Acta Astronaut. 2018;143:163–8. ISSN 0094-5765. Scholar
  5. 5.
    Armstrong S, Sandberg A. Eternity in six hours: intergalactic spreading of intelligent life and sharpening the Fermi paradox. Acta Astronaut. 2013;89:1–13. Scholar
  6. 6.
    Dyson FJ. Search for artificial stellar sources of infra-red radiation. Science. 1960;131(3414):1667–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Dyson FJ. The search for extraterrestrial technologies. In: Marshak RE, editor. Perspect mod phys. New York: Wiley; 1966.Google Scholar
  8. 8.
    Newman WI, Sagan C. Galactic civilizations: populations dynamics and interstellar diffusion. Icarus. 1981;46:293–327.CrossRefGoogle Scholar
  9. 9.
    Sagan C. Direct contact among galactic civilizations by relativistic interstellar spaceflight. Planet Space Sci. 1963;11:485–98.CrossRefGoogle Scholar
  10. 10.
    Kardashev N. On the inevitability and the possible structures of supercivilizations. Search for Extraterrestrial Life. Proc. Symp. Boston, Massachusetts. June, 1984. Dordrecht Publ. Co.; 1985. p. 497–504.Google Scholar
  11. 11.
    Sagan C, Dyson FJ, Morrison D. Cosmic connection: an extraterrestrial retrospective. 1973. ISBN 978-0-521-78303-3.Google Scholar
  12. 12.
    Cockell CS. Astrobiology and the ethics of new science. Interdisc Sci Rev. 2001;26 Scholar
  13. 13.
    Cockell CS. Using exoplanets to test the universality of biology. Nat Astronomy. 2018;2:758–9.CrossRefGoogle Scholar
  14. 14.
    Wandel A. On the abundance of extraterrestrial life after the Kepler mission. Int J Astrobiol. 2015;14(3):511–6. Scholar
  15. 15.
    Thucydides. The History of the Peloponnesian War. 431-404 B.C. (Translated by R. Crawley). The Internet Classics Archive.;
  16. 16.
    Marshall DC. Periodical cicada (Homoptera: Cicadidae) life-cycle variations, the historical emergence record, and the geographic stability of brood distributions. Ann Entomol Soc Am. 2001;94:386–99.CrossRefGoogle Scholar
  17. 17.
    Grant PR. The priming of periodical cicada life cycles. Trends Ecol Evol. 2005;20:169–74.PubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Girimonte D, Izzo D. AI for space applications. 2007. doi: Scholar
  20. 20.
    Shabbir J, Anwer T. AI and its role in near future. April 1, 2018. arXiv:1804.01396v1 [cs.AI].Google Scholar
  21. 21.
    Javaux EJ, Lepot K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth Sci Rev. 2017; Scholar
  22. 22.
    Schopf JW. The fossil record of cyanobacteria. In: Whitton B, editor. Ecology of cyanobacteria II. Dordrecht: Springer; 2012. Scholar
  23. 23.
    Grady MM, Wright IP, Pillinger CT. Microfossils from Mars: a question of faith. Astron Geophys. 1997;38:26–9. Scholar
  24. 24.
    Meteorite society 2019.
  25. 25.
    Christoffersen R, Lindsay JF, Noble SK, Meador MA, Kosmo JJ, Lawrence JA, Brostoff L, Young A, McCue T. Lunar dust effects on spacesuit systems: insights from the apollo spacesuits. NASA/TP-2008-000000.
  26. 26.
    Gaier JR. The effects of lunar dust on EVA systems during the apollo missions. NASA/TM-2005- 213610.
  27. 27.
    O’Brien BJ, Gaier JR. Indicative basic issues about lunar dust in the lunar environment. A white paper for the National Academies Planetary Sciences Decadal Survey. 2009.
  28. 28.
    Fernandez F, Minagar A, Alekseeva N, Shapshak P. Neuropsychiatric aspects of prion disease. In: Sadock BJ, Sadock VA, Ruiz P, editors. Comprehensive textbook of psychiatry. New York: Kluwer and Lippincott Publ; 2017. p. 601–18.Google Scholar
  29. 29.
    Logue J, Solomon J, Niemeyer BF, Benam KH, Lin AE, Bjornson Z, Jiang S, McIlwain DR, Nolan GP, Palacios G, Kuhn JH. Innovative technologies for advancement of WHO risk group 4 pathogens research. New York: Springer; 2019. Chapter in this volume.Google Scholar
  30. 30.
    Chippaux J-P. Outbreaks of Ebola virus disease in Africa: the beginning of a tragic saga. J Venom Anim Toxins Incl Trop Dis. 2014;20:1–14.CrossRefGoogle Scholar
  31. 31.
    Ladner JT, Wiley MR, Mate S, Dudas G, Prieto K, Lovett S, Nagle ER, Beitzel B, Gilbert ML, Fakoli L, Diclaro JW II, Schoepp RJ, Fair J, Kuhn JH, Hensley LE, Park DJ, Sabeti PC, Rambaut A, Sanchez-Lockhart M, Bolay FK, Kugelman JR, Palacios G. Evolution and spread of Ebola virus in Liberia, 2014-2015. Cell Host Microbe. 2015;18:659–69.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kuhn JH. In: Kuhn JH, Calisher CH, editors. Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. New York: Springer; 2015.Google Scholar
  33. 33.
  34. 34.
    Bradfute SB, Jahrling PB, Kuhn JH. Chapter 20. Ebola virus disease. Global virology I – identifying ad investigating viral diseases. New York: Springer; 2015. p. 543–59.CrossRefGoogle Scholar
  35. 35.
    Jahrling PB, Keith L, St. Claire M, Johnson RF, Bollinger L, Matthew G, Lackemeyer MG, Lisa E, Hensley LE, Jason Kindrachuk J, Kuhn JH. The NIAID Integrated Research Facility at Frederick, Maryland: a unique international resource to facilitate medical countermeasure development for BSL-4 pathogens. Pathog Dis. 2014;71:213–8.CrossRefGoogle Scholar
  36. 36.
    Janosko K, Holbrook MR, Adams R, Barr J, Bollinger L, Newton JT, Ntiforo C, Coe L, Wada J, Pusl D, Jahrling PB, Kuhn JH, Lackemeyer MG. Safety precautions and operating procedures in an (A)BSL-4 laboratory: 1. Biosafety level 4, suit laboratory, suite entry, and exit procedures. J Vis Exp. 2016;116:e52317. Scholar
  37. 37.
    Dyer O. Congo’s Ebola epidemic is now at its worst ever and still spreading. BMJ. 2019;362:1433–41. Scholar
  38. 38.
  39. 39.
    Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence. 2015;6:558–65.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shapshak P, Sinnott JT, Somboonwit C, Kuhn JH. Global virology I – identifying and investigating viral diseases. New York: Springer; 2015b.CrossRefGoogle Scholar
  41. 41.
    Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, Laughlin CA, Saif LJ, Dazak P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72:457–70.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Geoghegan JL, Duchenne S, Holmes EC. Comparative analysis estimates of the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathol. 2017;13:1–17. Scholar
  43. 43.
  44. 44.
    Min K, Reiners PW. High-temperature Mars-to-Earth transfer of meteorite ALH84001. Earth Planet Sci Lett. 2007;260:72–85.CrossRefGoogle Scholar
  45. 45.
    Tayro EAM, Scott ERD, Sharma SK, Misra AK. The pressures and temperatures of meteorite impact: evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite. Am Mineral. 2013;98:859–69. Scholar
  46. 46.
    Acosta-Maeda TE, Scott ERD, Sharma SK, Misra AK. The pressures and temperatures of meteorite impact: evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite. Am Mineral. 2013;98:859–69.CrossRefGoogle Scholar
  47. 47.
    Jenniskens P, Laux CO, Wilson MA, Schaller EL. The mass and speed dependence of meteor air plasma temperatures. Astrobiology. 2004;4:1–14.CrossRefGoogle Scholar
  48. 48.
    Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature. 1992;355:125–32. Scholar
  49. 49.
    Kant I. Allgemeine Naturgeschichte und Theorie des Himmels. Konigsberg, Leipzig: Petersen Publications; 1755.Google Scholar
  50. 50.
    Callahan MP, Smith KE, HJ Cleaves II, Ruzick J, Stern JC, Glavin DP, House CH, Dworkin JP. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A. 2011;108:13995–8. Scholar
  51. 51.
    Schmitt-Kopplin P, et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A. 2010;107:2763–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sephton MA. Organic compounds in carbonaceous meteorites. Nat Prod Rep. 2002;19:292–311.PubMedCrossRefGoogle Scholar
  53. 53.
    Engel MH, Macko SA. Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature. 1997;389:265–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Sagan C, Bilson E, Raulin F, Shapshak P. Amino acid destruction under simulated lunar conditions. Center for Radiophysics and Space Research, Cornell University, Ithaca. Report number 488 1971. Scholar
  55. 55.
    Loeb A. The habitable epoch of the early universe. 2014. arXiv:12.0613v3 [astro-ph.CO].CrossRefGoogle Scholar
  56. 56.
    Gibson CH. The biological big bang: the first oceans of primordial planets at 2–8 million years explain Hoyle/ Wickramasinghe cometary panspermia. Proc SPIE 8152-37. 2011. p. 1–19.Google Scholar
  57. 57.
    Sagan C. Ultraviolet selection pressure on the earliest organisms. Ithaca. Report number 445: Center for Radiophysics and Space Research, Cornell University; 1971.Google Scholar
  58. 58.
    Sagan C, Shapshak P. On ultraviolet light and the origin of ribosomes. Ithaca). Report number 446: Center for Radiophysics and Space Research, Cornell University; 1971.Google Scholar
  59. 59.
    Fox GE. Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol. 2010;2:a003483. Scholar
  60. 60.
    Benner SA, Kim HJ, Yang Z. Setting the stage: the history, chemistry, and geobiology behind RNA. Cold Spring Harb Perspect Biol. 2012;4:a003541. Scholar
  61. 61.
    Robertson MP, Joyce GF. The origins of the RNA world. Cold Spring Harb Perspect Biol. 2012;4:a003608. Scholar
  62. 62.
    Blaustein R. Advances in astrobiology. Bioscience. 2015;65:460–5. Scholar
  63. 63.
    Gray MW. Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell. 2017;28:1285–7. PMID: 28495966. PMCID: PMC5426843.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lopez-Garcia P, Emeb L, Moreiraa D. Symbiosis in eukaryotic evolution. J Theor Biol. 2017; Scholar
  65. 65.
    Mereschkowsky C. Uber natur und usprung der chromatophoren im pflanzenreiche. Biol Cent. 1905;25:593–604.Google Scholar
  66. 66.
    Mereschkowsky K. Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Ent-stehung der Organismen. Biol Cent. 1910;30:353–67.Google Scholar
  67. 67.
    Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14:255–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Sagan C. Definitions of life. This chapter originally appeared as the first section in the entry for “Life” in Encyclopedia Britannica, pp. 1083–1083A, Chicago: Encyclopedia Britannica Incorporated, 1970.
  69. 69.
    Schrodinger E. What is life? Mind and matter. Cambridge: Cambridge University Press; 1967. (First published in 1944).Google Scholar
  70. 70.
    Rabinowitch E, Govindjee. Photosynthesis. New York: Wiley; 1969. ISBN 471 704245.Google Scholar
  71. 71.
    Haaker H. Biochemistry and physiology of nitrogen fixation. BioEssays. 1988;9:112. Scholar
  72. 72.
    Leningher A. Principles of biochemistry. 7th ed. Accessed 4 Sept 2018.
  73. 73.
    Wilson EK, Walker J. Principles and techniques of biochemistry and molecular biology. In: Wilson K, Walker J, editors. Cambridge, UK: Cambridge University Press; 2010.
  74. 74.
    Vasudevan DM, Sreekumari S, Vaidyanathan K. Textbook of biochemistry for medical students. New Delhi: Jaypee Brothers Medical Publ. (P) Ltd; 2011. Scholar
  75. 75.
    Prigogine I. Thermodynamics of irreversible processes. New York: Wiley; 1967.Google Scholar
  76. 76.
    Klotz IM, Rosenberg RM. Chemical thermodynamics: basic concepts and methods. Hoboken: Wiley; 2008.CrossRefGoogle Scholar
  77. 77.
    Klotz IM. Energetics in biochemical reactions. New York: Academic Press Inc; 1957.Google Scholar
  78. 78.
    Tolman RC. Relativity, thermodynamics, and cosmology. Mineola: Dover Publications; 1987.Google Scholar
  79. 79.
    de Waele ATAM. The first, second, and third laws of thermodynamics (ThLaws05.tex). 2009.
  80. 80.
    Taubner RS, Pappenreiter P, Zwicker J, Smrzka D, Pruckner C, Kolar P, Bernacchi S, Seifert AH, Krajete A, Bach W, Peckmann J, Paulik C, Firneis MG, Schleper C, Rittmann SKMR. Biological methane production under putative Enceladus-like conditions. Nat Commun. 2018;9:748. Scholar
  81. 81.
    Masuda T, Dobson GP, Veech RL. The Gibbs-Donnan near-equilibrium system of heart. J Biol Chem. 1990;265:20321–34.PubMedGoogle Scholar
  82. 82.
    Tel T. Fractals, multifractals, and thermodynamics. Z. Naturforsch. 1988;43a:1154–74.Google Scholar
  83. 83.
    Denisov S. Fractal binary sequences: tsallis thermodynamics and Zipf’s law. Electromagnet Stud. 1998;I:64–8.Google Scholar
  84. 84.
    Gaspard P. Chaos, fractals, and thermodynamics. Bull Cl Sci Acad R Belg. 2000;6e-XI:9–48.Google Scholar
  85. 85.
    Deppman D. Thermodynamics with fractal structure, Tsallis statistics, and hadrons. 2016. arXiv:1601.02400v1 [hep-ph] 11 Jan 2016.Google Scholar
  86. 86.
    Weberszpil J, Chen W. Generalized maxwell relations in thermodynamics with metric derivatives. Entropy. 2017;19:407–19. Scholar
  87. 87.
    Shapshak P, Somboonwit C, Sinnott JT. Artificial Intelligence and Virology – quo vadis. Bioinformation. 2017a;13(12):410–1.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Shapshak P. Artificial intelligence and brain. Bioinformation. 2018;14(1):038–41.CrossRefGoogle Scholar
  89. 89.
    Zak M. A model of emerging intelligence in Universe. Int J Astrobiol. 2019;18(3):251–8. Scholar
  90. 90.
    Balaji S, Akash R, Krittika N, Shapshak P. Sequence accuracy in primary databases: a case study on HIV-1B. In: Shapshak P, Levine AJ, Somboonwit C, Foley BT, Singer E, Chiappelli F, Sinnott JT, editors. Global virology II. HIV and NeuroAIDS. New York: Springer; 2017.Google Scholar
  91. 91.
    Sneha P, Balaji S, Shapshak P. Amyloidogenic pattern prediction of HIV-1 proteins. In: Shapshak P, et al., editors. Chapter 33 in Global virology II – HIV and NeuroAIDS. New York: Springer; 2017. p. 823–95. Scholar
  92. 92.
    Geschwind MD. Prion diseases. Continuum (Minneap Minn). 2015;21(6 Neuroinfectious disease):1612–38. Scholar
  93. 93.
    Furr A, Young AJ, Richt J. The immune system in the pathogenesis and prevention of prion diseases. J Bioterr Biodef. 2012;S1:012. Scholar
  94. 94.
    Gianluigi F, Balducci C. Beta-amyloid oligomers and prion protein – fatal attraction? Prion. 2011;5:10–5.CrossRefGoogle Scholar
  95. 95.
    Boland CR. Non-coding RNA: it’s not junk. Dig Dis Sci. 2017;62:1107–9. Scholar
  96. 96.
    Antonarakis SE. Human genome sequence variation. In: Speicher M, Antonarakis SE, Motulsky AG, editors. Human genetics: problems and approaches. New York: Springer; 2009. p. 981.Google Scholar
  97. 97.
  98. 98.
    Shapshak P, Chiappelli F, Commins D, Singer E, Levine AJ, Somboonwit C, Minagar A, Pellionisz A. Molecular epigenetics, chromatin, and NeuroAIDS/HIV: translational implications. Bioinformation. 2008;3:53–7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Shapshak P, Levine AJ, Somboonwit C, Foley BT, Singer E, Chiappelli F, Sinnott JT. Global virology II. HIV and NeuroAIDS. New York: Springer; 2017b.Google Scholar
  100. 100.
    Shapshak P. Challenges in health research funding: an opinion. Bioinformation. 2015c;11(2):55–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med. 2017;9:49. Scholar
  102. 102.
    Pellionisz AJ. The principle of recursive genome function. Cerebellum. 2008;7:348–59. Scholar
  103. 103.
    Forget F. On the probability of habitable planets. Int J Astrobiol. 2013; Scholar
  104. 104.
    Spiegel DS, Turner EL. Bayesian analysis of the astrobiological implications of life’s early emergence on Earth. Proc Natl Acad Sci U S A. 2012;109:395–400.PubMedCrossRefGoogle Scholar
  105. 105.
    Scharf C, Cronin L. Quantifying the origins of life on a planetary scale. Proc Natl Acad Sci U S A. 2016; Scholar
  106. 106.
    Gonzalez G. Review: setting the stage for habitable planets. Life. 2014;4:1–27. Scholar
  107. 107.
    Gonzalez Oreja JA. Quo vadis, panspermia? Del origen de la vida en la Tierra a una ecologia interplanetaria. eVOLUCION. 2016;11(1):71–88.Google Scholar
  108. 108.
    Woolfson M. Planet formation and the evolution of the Solar System. 2017.
  109. 109.
    Wooldridge SA. Mass extinctions past and present: a unifying hypothesis. Biogeosci Discuss. 2008;5:2401–23.CrossRefGoogle Scholar
  110. 110.
    Drabek-Maunder E, Greaves J, Fraser H, Clements D, Alconcel L. Ground-based detection of a cloud of methanol from Enceladus: when is a biomarker not a biomarker? Int J Astrobiol. 2017:1–8. Scholar
  111. 111.
    von Neumann J. Theory of self-replicating automata. In: Burks AW, editor. Urbana: University of Illinois Press; 1966.Google Scholar
  112. 112.
    Pesavento U. An implementation of von Neumann’s self-reproducing machine. Artif Life. 1995;2:337–54. (Princeton University and Massachusetts Institute of Technology).PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    van Hecke K, de Croon GCHE, Hennes D, Setterfield TP, Saenz-Otero A. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning. Acta Astronaut. 2017;140:1–9. Scholar
  114. 114.
    Shen T, Yuan K, Chen D, Colloc J, Yang M, Li Y, Lei K. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription. Artificial. Intelligence in Medicine. 2018.
  115. 115.
    Dirkx D, Noomen R, Visser PNAM, Gurvits L, Vermeersen LLA. Space-time dynamics estimation from space mission tracking data. Astron Astrophys. 2015;.
  116. 116.
    Turyshev SG, Williams JG, Shao M, Anderson JD. Laser ranging to the Moon, Mars, and beyond. The 2004 NASA/JPL Workshop on Physics for Planetary Exploration. April 20–22, 2004, Solvang, CA.
  117. 117.
    Hippke M. Interstellar communication. II. Application to the solar gravitational lens. Acta Astronaut. 2018;142:64–74.CrossRefGoogle Scholar
  118. 118.
    Feynman R. New Directions in Physics: the Los Alamos 40th anniversary volume. In: Metropolis N, Kerr DM, Rota G-C, editors. Orlando: Academic Press, Inc.; 1987.Google Scholar
  119. 119.
    Feynman R. Quantum mechanical computers. Optic News. 1985;11:11–20. Scholar
  120. 120.
    Gudder SP. Stochastic methods in quantum mechanics. Mineola: Dover Publications, Inc; 1979.Google Scholar
  121. 121.
    Shapshak P. Challenges in Health Research Funding: an opinion. Bioinformation. 2015a;11(2):55–6. PMCID: PMC4369678.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Meech KJ, Weryk R, Micheli M, Kleyna JT, Hainaut OR, Jedicke R, Wainscoat RJ, Chambers KC, Keane JV, Petric A, Denneau L, Magnier E, Berger T, Huber ME, Flewelling H, Waters C, Schunova-Lilly E, Chastel S. A brief visit from a red and extremely elongated interstellar asteroid. Nature. 2017;552:378–81. Scholar
  123. 123.
    Schneider J. Is 1I/2017 U1 really of interstellar origin. 2017. arXiv:1711.05735v1.Google Scholar
  124. 124.
    Fitzsimmons A, Snodgrass C, Rozitis B, Yang B, Hyland M, Seccull T, Bannister MT, Fraser WC, Jedicke R, Lacerda P. Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua. ArXiv:1712.06552v1.Google Scholar
  125. 125.
    Fraser WC, Pravec P, Fitzsimmons A, Lacerda P, Bannister MT, Snodgrass C, Smolic I. The tumbling rotational state of 1l/Oumuamua. Nat Astronomy. 2018; Scholar
  126. 126.
    Loeb A. Six strange facts about our first interstellar guest, ‘Oumuamua’. 2018. arXiv:1811.08832.Google Scholar
  127. 127.
    Bailer-Jones CAL, Farnocchia D, Meech KJ, Brasser R, Micheli M, Chakhrabarti S, Buie MW, Hainaut OR. Plausible home stars of the interstellar object ‘Oumuamua’ found in Gaia DR2. 2018. arXiv: 1809.09009v1.Google Scholar
  128. 128.
    Siraj A, Loeb A. Identifying interstellar objects trapped in the solar system through their orbital parameters. 2019. arXiv:1811.09632v5 [astro-ph.EP] 4 Feb 2019.Google Scholar
  129. 129.
    Europa Lander Mission, Lander Study – 2016 report – JPL D-97667. NASA. Hand KP and the project engineering team. 2017.Google Scholar
  130. 130.
  131. 131.
  132. 132.
  133. 133.
  134. 134.
    Faye D, Rampini R. Contamination control policy: last publication standards in standardizations.
  135. 135.
    ECSS Secretariat, ESA-ESTEC, Requirements & Standards Division, Noordwijk, The Netherlands. Space product assurance Cleanliness and contamination control. 2008.
  136. 136.
  137. 137.
    Hara T, Takagi K, Kajiura D. Transfer of life-bearing meteorites from earth to other planets. J Astrobiol Space Sci Rev. 2019;1:299–310.Google Scholar
  138. 138.
    Arrhenius S. Die Verbreitung des Lebens im Weltenraum. Die Umschau, Frankfurt a.M. 1903;7:481–6.Google Scholar
  139. 139.
    O’Leary MR. Anaxagoras and the origin of Panspermia theory. In iUniverse. ISBN 978-0-595-49596-2. OCLC 757322661. 2008.Google Scholar
  140. 140.
    Wickramasinghe C. The astrobiological case for our cosmic ancestry. Int J Astrobiol. 2010;9:119–25.CrossRefGoogle Scholar
  141. 141.
    Wickramasinghe MK, Wickramasinghe C. Interstellar transfer of planetary microbiota. Mon Not R Astron Soc. 2004;348:52–7. Scholar
  142. 142.
    Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DA, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN, Crossey LJ, Scheble RT. Cave biosignature suites: microbes, minerals and Mars. Astrobiology. 2001;1:25–55.PubMedCrossRefGoogle Scholar
  143. 143.
    Melim LA, Liescheidt R, Northup DE, Spilde MN, Boston PJ, Queen JM. A biosignature suite from cave pool precipitates, Cottonwood cave, New Mexico. Astrobiology. 2009;9:907–17.PubMedCrossRefGoogle Scholar
  144. 144.
    Ginsburg I, Lingam M, Loeb A. Galactic panspermia. 2018. arXiv:1810.04307v2 [astro-ph.EP].Google Scholar
  145. 145.
    Suttle C. Viruses in the sea. Nature. 2005;437:356–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Weinberg KD. Viruses in marine ecosystems: from open waters to coral reefs. Adv Virus Res. 2018;101:1–38. Scholar
  147. 147.
    Glavin DP, Dworkin JP, Lupisella M, Kminek G, Rumme JD. Biological contamination studies of lunar landing sites: implications for future planetary protection and life detection on the Moon and Mars. Int J Astrobiol. 2005:265–71. Scholar
  148. 148.
    Glavin DP, Dworkin JP, Lupisella M, Kminek G, and Rumme JD. In situ biological contamination studies of the moon: implications for future planetary protection and life detection missions. 2010.
  149. 149.
    Netea MG, van de Veerdonk FL, Strous M, van der Meer JWM. Infection risk of a human mission to Mars. J Astrobiol Space Sci Rev. 2019;1:144–55.Google Scholar
  150. 150.
    Ridder NN, Maan DC, Summerer L. Terraforming Mars: generating greenhouse gases to increase martian surface temperatures. J Astrobiol Space Sci Rev. 2019;1:338–52.Google Scholar
  151. 151.
    Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol. 2017;9:a023812.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L. Design and synthesis of a minimal bacterial genome. Science. 2016;351:aad6253.PubMedCrossRefGoogle Scholar
  153. 153.
    Zhang LY, Chang SH, Wang J. Synthetic biology: from the first synthetic cell to see its current situation and future development. Chin Sci Bull. 2011;56:229–37. Scholar
  154. 154.
    Chakraborty C, Agoramoorthy G. Stem cells in the light of evolution. Review article. Indian J Med Res. 2012;135:813–9.PubMedPubMedCentralGoogle Scholar
  155. 155.
    The stem cell book-NIH stem cell information. Cited 4-15-2019.
  156. 156.
    Hartenstein V. Stem cells in the context of evolution and development. Dev Genes Evol. 2013;223 Scholar
  157. 157.
    Arnould J. Astrobiology, sustainability and ethical perspectives. Sustainability. 2009;1:1323–30. Scholar
  158. 158.
    Losch A. The need of an ethics of planetary sustainability. Int J Astrobiol. 2017;
  159. 159.
    Rodriguez HE, Lakshmi S, Somboonwit C, Oxner A, Guerra L, Addisu A, Gutierrez L, Sinnott JT, Nilofer C, Kangueane P, Shapshak P. Gene therapy blueprints for NeuroAIDS. In: Shapshak P, Levine AJ, Foley BT, Somboonwit C, Singer E, Chiappelli F, Sinnott JT, editors. Global virology II – HIV and NeuroAIDS. New York: Springer; 2017. p. 953–93.CrossRefGoogle Scholar
  160. 160.
    de Gouveia A. Neutrino Mass Models. Ann Rev Nucl Part Sci. 2016;66:197–215.CrossRefGoogle Scholar
  161. 161.
    de Gouveia A. Neutrino Anomalies & CEνNS. PIRE Workshop. COFI February 6–7, 2017a.Google Scholar
  162. 162.
    de Gouveia A. Neutrino physics. Evanston). Lectures at Institute for Advanced Study (Princeton, NJ): Northwestern University; 2017b.Google Scholar
  163. 163.
  164. 164.
    Hannestad S. Aspects of neutrino physics in the early universe. PhD Thesis. Institute of Physics and Astronomy, University of Aarhus, Copenhagen, Denmark. 1997.
  165. 165.
    Freedman WL. The Hubble constant and the expansion age of the Universe. Phys Rep. 2000;334:13–31.CrossRefGoogle Scholar
  166. 166.
    Rajasekaran G. Phenomenology of neutrino oscillations. Pramana. 2000;55:19–5.CrossRefGoogle Scholar
  167. 167.
    Indumathi D, Murthy MVN, Rajasekaran G. Perspectives in Neutrino Physics. Proc India Natl Sci Acad–Part A. 2004;70:1–15.Google Scholar
  168. 168.
  169. 169.
    Pasachoff JM, Kutner ML. Neutrinos for interstellar communication. Cosmic Search. 1979:2–21.Google Scholar
  170. 170.
    Hippke M. Interstellar communication. IV. Benchmarking information carriers. Acta Astronaut. 2018b;151:53–62.CrossRefGoogle Scholar
  171. 171.
    Learned JG, Pakvasa S, Zee A. Galactic neutrino communication. Phys Lett B. 2009;671:15–9.CrossRefGoogle Scholar
  172. 172.
    Stancil DD, Brooks W, Alania M, 110 additional authors. Demonstration of communication using neutrinos. Mod Phys Lett A. 2012:1–10.Google Scholar
  173. 173.
    Silagadze ZK. SETI and muon collider. 2008. arXiv:0803.0409v1.Google Scholar
  174. 174.
    Cavanna F, Costantinia ML, Palamarab O, Vissani F. Neutrinos as astrophysical probes. 2003. arXiv:astro-ph/0311256v1 11 Nov 2003.Google Scholar
  175. 175.
  176. 176.
    Esposito S. Majorana solution of the Thomas-Fermi equation. Am J Phys. 2002a;70:852–63.CrossRefGoogle Scholar
  177. 177.
    Esposito S. Majorana transformation for differential equations. Int J Theor Phys. 2002b;41:2417–31.CrossRefGoogle Scholar
  178. 178.
    Di Grezia E, Esposito S. Fermi, Majorana and the statistical model of atoms. Found Phys. 2004;34:1431–52.CrossRefGoogle Scholar
  179. 179.
    Hall LB, Miles JR, Bruch CW, Tarver P. The objectives and technology of spacecraft sterilization. Washington, DC: NASA History Division, NASA Headquarters; 1995. 542pp.Google Scholar
  180. 180.
    Meltzer M. When biospheres collide. A history of NASA’s planetary protection program. 2011. NASA SP-2011-4234.Google Scholar
  181. 181.
    Rhawn J. Sterilization failure and fungal contamination of Mars and NASA’s Mars rovers. J Cosmol. 2018;30:51–97. Scholar
  182. 182.
    Faire AG, Parro V, Schulze-Makuch D, Whyte L. Searching for life on Mars before it is too late. Astrobiology. 2018;17:962–70. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Infectious Diseases and International Health, Department of Internal MedicineUniversity of South Florida, Morsani College of MedicineTampaUSA

Personalised recommendations