Mechanised Assessment of Complex Natural-Language Arguments Using Expressive Logic Combinations

  • David FuenmayorEmail author
  • Christoph Benzmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11715)


We present and illustrate an approach to combining logics based on shallow semantical embeddings, a technique that harnesses the high expressive power of classical higher-order logic (HOL) as a meta-language in order to embed the syntax and semantics of some object logic. This approach allows us to reuse existing (higher-order) automated reasoning infrastructure for seamlessly combining and reasoning with different non-classical logics (modal, deontic, intensional, epistemic, etc.). In particular, the work presented here illustrates the utilisation of the Isabelle proof assistant for the representation and assessment of linguistically complex arguments. We illustratively combine a dyadic deontic logic (also featuring alethic modalities) enhanced with higher-order quantifiers and a 2D-semantics drawing on Kaplan’s logic of indexicals.


Logic combinations Higher-order logic Deontic logic Argumentation Higher-order theorem proving Isabelle 


  1. 1.
    Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput. Program. 172, 48–62 (2019)CrossRefGoogle Scholar
  2. 2.
    Benzmüller, C., Farjami, A., Parent, X.: A dyadic deontic logic in HOL. In: Broersen, J., Condoravdi, C., Nair, S., Pigozzi, G. (eds.), Proceedings of DEON 2018—Deontic Logic and Normative Systems, pp. 33–50. College Publications (2018)Google Scholar
  3. 3.
    Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Log. Univers. (Spec. Issue Multimodal Log.) 7(1), 7–20 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beyleveld, D.: The Dialectical Necessity of Morality: An Analysis and Defense of Alan Gewirth’s Argument to the Principle of Generic Consistency. UCP, Chicago (1991)Google Scholar
  5. 5.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). Scholar
  6. 6.
    Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for engineering ethically correct robots. IEEE Intell. Syst. 21(4), 38–44 (2006)CrossRefGoogle Scholar
  7. 7.
    Carmo, J., Jones, A.J.I.: Deontic logic and contrary-to-duties. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 8, pp. 265–343. Springer, Heidelberg (2002). Scholar
  8. 8.
    Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24, 33–36 (1963)CrossRefGoogle Scholar
  9. 9.
    Fuenmayor, D., Benzmüller, C.: Formalisation and evaluation of Alan Gewirth’s proof for the principle of generic consistency in Isabelle/HOL. Archive of Formal Proofs (2018).
  10. 10.
    Fuenmayor, D., Benzmüller, C.: Isabelle/HOL sources associated with this paper. Github (2019).
  11. 11.
    Furbach, U., Schon, C.: Deontic logic for human reasoning. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation. LNCS (LNAI), vol. 9060, pp. 63–80. Springer, Cham (2015). Scholar
  12. 12.
    Gewirth, A.: Reason and Morality. University of Chicago Press, Chicago (1981)Google Scholar
  13. 13.
    Govindarajulu, N.S., Bringsjord, S.: On automating the doctrine of double effect. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 4722–4730 (2017)Google Scholar
  14. 14.
    Kaplan, D.: Afterthoughts. In: Almog, J., Perry, J., Wettstein, H. (eds.), Themes from Kaplan, pp. 565–614. Oxford University Press (1989)Google Scholar
  15. 15.
    Kaplan, D.: Demonstratives. In: Almog, J., Perry, J., Wettstein, H. (eds.), Themes from Kaplan, pp. 481–563. Oxford University Press (1989)Google Scholar
  16. 16.
    Pereira, L.M., Saptawijaya, A.: Programming Machine Ethics. Springer, Heidelberg (2016). Scholar
  17. 17.
    Schroeter, L.: Two-dimensional semantics. In: Zalta, E.N. (eds.), The Stanford Encyclopedia of Philosophy (2017). Summer 2017 editionGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations