Advertisement

Reviving Basic Narrowing Modulo

  • Dohan Kim
  • Christopher LynchEmail author
  • Paliath Narendran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11715)

Abstract

We define an inference rule called the Parallel rule. Given a rewrite system R and an equational theory E, where R is E-convergent modulo, we show that if R is saturated under the Parallel rule then Basic Narrowing modulo E is complete for R. If R is finitely saturated under both Parallel and Forward Overlap then Basic Narrowing, with right hand side abstracted, is complete and terminates, and thus it is a decision procedure for unification modulo \(R \cup E\). We give examples, such as the theory of XOR, the theory of abelian groups and Associativity with a unit element. We also show that R has the finite variant property modulo E if and only if R can be finitely saturated under Parallel and Forward Overlap, provided that E unification is finitary.

Keywords

Basic Narrowing E-unification Finite Variant Property 

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 8, vol. 1, pp. 445–532. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Dershowitz, N.: Completion for rewriting modulo a congruence. Theor. Comput. Sci. 67(2), 173–201 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40885-4_23CrossRefGoogle Scholar
  5. 5.
    Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32033-3_22CrossRefGoogle Scholar
  6. 6.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, chap. 9, vol. 1, pp. 535–610. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  7. 7.
    Erbatur, S., et al.: Effective symbolic protocol analysis via equational irreducibility conditions. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33167-1_5CrossRefGoogle Scholar
  8. 8.
    Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03829-7_1CrossRefzbMATHGoogle Scholar
  9. 9.
    Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Logic Algebraic Program. 81(7), 898–928 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980).  https://doi.org/10.1007/3-540-10009-1_25CrossRefGoogle Scholar
  11. 11.
    Kirchner, H.: Some extensions of rewriting. In: Comon, H., Jounnaud, J.-P. (eds.) TCS School 1993. LNCS, vol. 909, pp. 54–73. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59340-3_5CrossRefGoogle Scholar
  12. 12.
    Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor. Comput. Sci. 672, 1–35 (2017).  https://doi.org/10.1016/j.tcs.2016.12.026MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dohan Kim
    • 1
  • Christopher Lynch
    • 1
    Email author
  • Paliath Narendran
    • 2
  1. 1.Clarkson UniversityPotsdamUSA
  2. 2.University at Albany, SUNYAlbanyUSA

Personalised recommendations