Advertisement

Two Is Enough – Bisequent Calculus for S5

  • Andrzej IndrzejczakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11715)

Abstract

We present a generalised sequent calculus based on the use of pairs of ordinary sequents called bisequents. It may be treated as the weakest kind of system in the rich family of systems operating on items being some collections of ordinary sequents. This family covers hypersequent and nested sequent calculi introduced for several non-classical logics. It seems that for many such logics, including some many-valued and modal ones, a reasonably modest generalization of standard sequents is sufficient. In this paper we provide a proof theoretic examination of S5 in the framework of bisequent calculus. Two versions of cut-free calculus are provided. The first version is more flexible for proof search but admits only indirect proof of cut elimination. The second version is syntactically more constrained but admits constructive proof of cut elimination. This result is extended to several versions of first-order S5.

Keywords

Bisequent calculus Modal logic Cut elimination 

References

  1. 1.
    Avron, A.: A constructive analysis of RM. J. Symb. Log. 52, 939–951 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., et al. (eds.) Logic: From Foundations to Applications, pp. 1–32. Oxford Science Publication, Oxford (1996)Google Scholar
  3. 3.
    Avron, A., Honsell, F., Miculan, M., Paravano, C.: Encoding modal logics in logical frameworks. Stud. Log. 60, 161–202 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avron, A., Lahav, O.: A simple cut-free system of paraconsistent logic equivalent to S5. In: Bezhanishvili, G., et al. (eds.) Advances in Modal Logic, vol. 12, pp. 29–42. College Publications (2018)Google Scholar
  5. 5.
    Baaz, M., Fermüller, C.G., Zach, R.: Dual systems of sequents and tableaux for many-valued logics. Technical report TUW-E185.2-BFZ, 2–92 (1992)Google Scholar
  6. 6.
    Baelde, D., Lick, A., Schmitz, S.: A hypersequent calculus with clusters for linear frames. In: Bezhanishvili, G., et al. (eds.) Advances in Modal Logic, vol. 12, pp. 43–62. College Publications (2018)Google Scholar
  7. 7.
    Bednarska, K., Indrzejczak, A.: Hypersequent calculi for S5 - the methods of cut-elimination. Log. Log. Philos. 24(3), 277–311 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Blamey, S., Humberstone, L.: A perspective on modal sequent logic. Publications of the Research Institute for Mathematical Sciences, Kyoto University 27, 763–782 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Braüner, T.: Hybrid Logic and its Proof-Theory. Springer, Roskilde (2009).  https://doi.org/10.1007/978-94-007-0002-4CrossRefzbMATHGoogle Scholar
  10. 10.
    Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6), 551–571 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bull, R.A.: Cut elimination for propositional dynamic logic without star. Z. für Math. Log. Und Grundl. Math. 38, 85–100 (1992)CrossRefGoogle Scholar
  12. 12.
    Ciabattoni, A., Ramanayake, R., Wansing, H.: Hypersequent and display calculi - a unified perspective. Stud. Log. 102(6), 1245–1294 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Curry, H.B.: A Theory of Formal Deducibility. University of Notre Dame Press, Notre Dame (1950)zbMATHGoogle Scholar
  14. 14.
    Dos̆en, K.: Sequent-systems for modal logic. J. Symb. Log. 50, 149–159 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht (1983)CrossRefGoogle Scholar
  16. 16.
    Fitting, M.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Log. 163, 291–313 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garson, J.W.: Quantification in modal logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 249–308. Kluwer, Dordrecht (1984)CrossRefGoogle Scholar
  18. 18.
    Girard, J.Y.: Proof Theory and Logical Complexity. Bibliopolis, Napoli (1987)zbMATHGoogle Scholar
  19. 19.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  20. 20.
    Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61208-4_14CrossRefGoogle Scholar
  21. 21.
    Indrzejczak, A.: Cut-free double sequent calculus for S5. Log. J. IGPL 6(3), 505–516 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Indrzejczak, A.: Generalised sequent calculus for propositional modal logics. Log. Trianguli 1, 15–31 (1997)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Indrzejczak, A.: Multiple Sequent Calculus for Tense Logics. Abstracts of AiML and ICTL 2000, Leipzig, pp. 93–104 (2000)Google Scholar
  24. 24.
    Indrzejczak, A.: Natural Deduction, Hybrid Systems and Modal Logics. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-90-481-8785-0CrossRefzbMATHGoogle Scholar
  25. 25.
    Indrzejczak, A.: Simple decision procedure for S5 in standard cut-free sequent calculus. Bull. Sect. Log. 45(2), 125–140 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Indrzejczak, A.: Linear time in hypersequent framework. Bull. Symb. Log. 22(1), 121–144 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53, 119–135 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kurokawa, H.: Hypersequent calculi for modal logics extending S4. In: Nakano, Y., Satoh, K., Bekki, D. (eds.) JSAI-isAI 2013. LNCS (LNAI), vol. 8417, pp. 51–68. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10061-6_4CrossRefGoogle Scholar
  29. 29.
    Lahav O.: From frame properties to hypersequent rules in modal logics. In: Proceedings of LICS, pp. 408–417. Springer (2013)Google Scholar
  30. 30.
    Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24312-2_10CrossRefzbMATHGoogle Scholar
  31. 31.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-1-4020-9409-5CrossRefzbMATHGoogle Scholar
  32. 32.
    Mints, G.: Some calculi of modal logic [in Russian]. Trudy Mat. Inst. Steklov. 98, 88–111 (1968)MathSciNetGoogle Scholar
  33. 33.
    Mints G.: Systems of Lewis and system T’ [in Russian], Supplement to Russian edition. In: Feys, R. (ed.) Modal Logic, Nauka, pp. 422–509 (1974)Google Scholar
  34. 34.
    Mints, G.: Selected Papers in Proof Theory. North-Holland, Amsterdam (1992)zbMATHGoogle Scholar
  35. 35.
    Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  36. 36.
    Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34, 507–544 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi I. Osaka Math. J. 9, 113–130 (1957)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Pottinger, G.: Uniform cut-free formulations of T, S4 and S5 (abstract). J. Symb. Log. 48, 900 (1983)Google Scholar
  40. 40.
    Restall, G.: Proofnets for S5: sequents and circuits for modal logic. Lect. Notes Log. 28, 151–172 (2007)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Sato, M.: A study of kripke-type models for some modal logics by Gentzen’s sequential method. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 381–468 (1977)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Serebriannikov, O.: Gentzen’s Hauptsatz for modal logic with quantifiers. In: Niniluoto, I., Saarinen, E. (eds.) Intensional Logic: Theory and Applications; Acta Philosophica Fennica, vol. 35, pp. 79–88 (1982)Google Scholar
  43. 43.
    Stouppa, P.: A deep inference system for the modal logic S5. Stud. Log. 85, 199–214 (2007)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wansing, H.: Displaying Modal Logics. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  45. 45.
    Wansing, H.: Sequent systems for modal logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. IV, pp. 89–133. Reidel Publishing Company, Dordrecht (2002)Google Scholar
  46. 46.
    Zeman, J.: Modal Logic. Oxford University Press, Oxford (1973)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of LogicUniversity of ŁódźŁódźPoland

Personalised recommendations