Advertisement

Epistemic Reasoning with Byzantine-Faulty Agents

  • Roman KuznetsEmail author
  • Laurent Prosperi
  • Ulrich Schmid
  • Krisztina Fruzsa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11715)

Abstract

We introduce a novel comprehensive framework for epistemic reasoning in multi-agent systems where agents may behave asynchronously and may be byzantine faulty. Extending Fagin et al.’s classic runs-and-systems framework to agents who may arbitrarily deviate from their protocols, it combines epistemic and temporal logic and incorporates fine-grained mechanisms for specifying distributed protocols and their behaviors. Besides our framework’s ability to express any type of faulty behavior, from fully byzantine to fully benign, it allows to specify arbitrary timing and synchronization properties. As a consequence, it can be adapted to any message-passing distributed computing model we are aware of, including synchronous processes and communication, (un-)reliable uni-/multi-/broadcast communication, and even coordinated action. The utility of our framework is demonstrated by formalizing the brain-in-a-vat scenario, which exposes the substantial limitations of what can be known by asynchronous agents in fault-tolerant distributed systems. Given the knowledge of preconditions principle, this restricts preconditions that error-prone agents can use in their protocols. In particular, it is usually necessary to relativize preconditions with respect to the correctness of the acting agent.

Notes

Acknowledgments

We are grateful to Hans van Ditmarsch and Yoram Moses for extensive helpful comments on earlier versions of this paper. We also thank the anonymous reviewers for their comments and suggestions on related research.

References

  1. 1.
    Ben-Zvi, I., Moses, Y.: Agent-time epistemics and coordination. In: Lodaya, K. (ed.) ICLA 2013. LNCS, vol. 7750, pp. 97–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36039-8_9CrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Zvi, I., Moses, Y.: Beyond Lamport’s happened-before: On time bounds and the ordering of events in distributed systems. J. ACM 61(2), 13 (2014).  https://doi.org/10.1145/2542181MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castañeda, A., Gonczarowski, Y.A., Moses, Y.: Unbeatable consensus. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 91–106. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_7CrossRefGoogle Scholar
  4. 4.
    Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environment: Crash failures. Inf. Comput. 88(2), 156–186 (1990).  https://doi.org/10.1016/0890-5401(90)90014-9MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify fault tolerance, recoverability, and diagnosability in multi-agent systems. Inf. Comput. 254(2), 167–194 (2017).  https://doi.org/10.1016/j.ic.2016.10.007MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Common knowledge revisited. Ann. Pure Appl. Logic 96, 89–105 (1999).  https://doi.org/10.1016/S0168-0072(98)00033-5MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: AAMAS 2002, pp. 737–744. ACM (2002).  https://doi.org/10.1145/544862.544917
  9. 9.
    Fruzsa, K.: Hope for epistemic reasoning with faulty agents! In: Proceedings of ESSLLI 2019 Student Session (2019, to appear)Google Scholar
  10. 10.
    Gonczarowski, Y.A., Moses, Y.: Timely common knowledge: Characterising asymmetric distributed coordination via vectorial fixed points. In: Schipper, B.C. (ed.) TARK XIV, pp. 79–93 (2013). https://arxiv.org/pdf/1310.6414.pdf
  11. 11.
    Goren, G., Moses, Y.: Silence. In: PODC 2018, pp. 285–294. ACM (2018).  https://doi.org/10.1145/3212734.3212768
  12. 12.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37(3), 549–587 (1990).  https://doi.org/10.1145/79147.79161MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Halpern, J.Y., Moses, Y., Waarts, O.: A characterization of eventual Byzantine agreement. SIAM J. Comput. 31(3), 838–865 (2001).  https://doi.org/10.1137/S0097539798340217MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell University Press, Ithaca (1962)Google Scholar
  15. 15.
    Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms for teams of situated agents. Artif. Intell. 171(8–9), 491–513 (2007).  https://doi.org/10.1016/j.artint.2007.03.005MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kraus, S., Lehmann, D.: Knowledge, belief and time. Theor. Comput. Sci. 58, 155–174 (1988).  https://doi.org/10.1016/0304-3975(88)90024-2MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K., Gréaux, L.: Knowledge in Byzantine message-passing systems I: Framework and the causal cone. Technical report TUW-260549, TU Wien (2019). https://publik.tuwien.ac.at/files/publik_260549.pdf
  18. 18.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982).  https://doi.org/10.1145/357172.357176CrossRefzbMATHGoogle Scholar
  19. 19.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02658-4_55CrossRefGoogle Scholar
  20. 20.
    McKinsey, M.: Skepticism and content externalism. In: Stanford Encyclopedia of Philosophy (2018). https://plato.stanford.edu/entries/skepticism-content-externalism/
  21. 21.
    Michel, R.: A categorical approach to distributed systems, expressibility and knowledge. In: Rudnicki, P. (ed.) PODS 1989, pp. 129–143. ACM (1989).  https://doi.org/10.1145/72981.72990
  22. 22.
    Moses, Y.: Relating knowledge and coordinated action: The knowledge of preconditions principle. In: Ramanujam, R. (ed.) TARK 2015, pp. 231–245 (2015).  https://doi.org/10.4204/EPTCS.215.17MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moses, Y., Shoham, Y.: Belief as defeasible knowledge. Artif. Intell. 64(2), 299–321 (1993).  https://doi.org/10.1016/0004-3702(93)90107-MMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Moses, Y., Tuttle, M.R.: Programming simultaneous actions using common knowledge. Algorithmica 3, 121–169 (1988).  https://doi.org/10.1007/BF01762112MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pessin, A., Goldberg, S. (eds.): The Twin Earth Chronicles: Twenty Years of Reflection on Hilary Putnam’s the “Meaning of Meaning". M. E. Sharpe (1996)Google Scholar
  26. 26.
    Taubenfeld, G.: Distributed Computing Pearls. Morgan & Claypool Publishers (2018).  https://doi.org/10.2200/S00845ED1V01Y201804DCT014MathSciNetCrossRefGoogle Scholar
  27. 27.
    Trask, R.L.: Mind the Gaffe: The Penguin Guide to Common Errors in English. Penguin Books (2001)Google Scholar
  28. 28.
    van Ditmarsch, H.: Dynamics of lying. Synthese 191(5), 745–777 (2014).  https://doi.org/10.1007/s11229-013-0275-3MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roman Kuznets
    • 1
    Email author
  • Laurent Prosperi
    • 2
  • Ulrich Schmid
    • 1
  • Krisztina Fruzsa
    • 1
  1. 1.TU WienViennaAustria
  2. 2.ENS Paris-SaclayCachanFrance

Personalised recommendations