Advertisement

Extending Forgetting-Based Abduction Using Nominals

  • Warren Del-PintoEmail author
  • Renate A. Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11715)

Abstract

Abductive reasoning produces hypotheses to explain new observations with respect to some background knowledge. This paper focuses on ABox abduction in ontologies, where knowledge is expressed in description logics and both the observations and hypotheses are ground statements. The input is expressed in the description logic \(\mathcal {ALC}\) and the observation can contain any set of \(\mathcal {ALC}\) concept or role assertions. The proposed approach uses forgetting to produce hypotheses in the form of a disjunctive set of axioms, where each disjunct is an independent explanation for the observation and the overall hypothesis is semantically minimal, i.e., makes the least assumptions required. Previous work on forgetting-based abduction is combined with the semantic forgetting method of the system FAME. The hypotheses produced are expressed in an extension of \(\mathcal {ALC}\) which uses nominals, role inverses and fixpoints: \(\mathcal {ALCOI}\mu (\nabla )\). This combination overcomes the inability of the existing forgetting-based approach to allow role assertions in observations and hypotheses, and enables the computation of other previously unreachable hypotheses. An experimental evaluation is performed using a prototype implementation of the method on a corpus of real world ontologies.

References

  1. 1.
    Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik. Math. Ann. 110, 330–413 (1935)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baader, F., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Bienvenu, M.: Complexity of abduction in the \(\cal{EL}\) family of lightweight description logics. In: Proceedings of KR 2008, pp. 220–230. AAAI Press (2008)Google Scholar
  4. 4.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description logics with fixpoints based on automata on finite trees. In: Proceedings of IJCAI 1999, pp. 84–89. AAAI Press (1999)Google Scholar
  5. 5.
    Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: Reasoning about explanations for negative query answers in DL-Lite. J. Artif. Intell. Res. 48, 635–669 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Del-Pinto, W., Schmidt, R.A.: ABox abduction via forgetting in \(\cal{ALC}\). In: Proceedings of AAAI 2019. AAAI Press (2019)Google Scholar
  7. 7.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. Artif. Intell. 128, 143–159 (2001)CrossRefGoogle Scholar
  8. 8.
    Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical ABox abduction in large OWL DL ontologies. In: Proceedings of AAAI 2011, pp. 1160–1165. AAAI Press (2011)Google Scholar
  9. 9.
    Du, J., Wan, H., Ma, H.: Practical TBox abduction based on justification patterns. In: Proceedings of AAAI 2017, pp. 1100–1106. AAAI Press (2017)Google Scholar
  10. 10.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42, 3–42 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In: Proceedings of OWL: Experiences and Directions. CEUR Workshop Proceedings, vol. 216. CEUR-WS.org (2006)Google Scholar
  12. 12.
    Flach, P.A., Kakas, A.C.: On the relation between abduction and inductive learning. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 4, pp. 155–196 (2000)zbMATHGoogle Scholar
  13. 13.
    Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations. Computational Aspects and Applications. College Publications, London (2008)zbMATHGoogle Scholar
  14. 14.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3, 158–182 (2005)CrossRefGoogle Scholar
  15. 15.
    Halland, K., Britz, K.: ABox abduction in \(\cal{ALC}\) using a DL tableau. In: Proceedings of SAICSIT 2012, pp. 51–58. ACM (2012)Google Scholar
  16. 16.
    Hobbs, J.R., Stickel, M., Martin, P., Edwards, D.: Interpretation as abduction. Artif. Intell. 63, 69–142 (1993)CrossRefGoogle Scholar
  17. 17.
    Klarman, S., Endriss, U., Schlobach, S.: ABox abduction in the description logic \(\cal{ALC}\). J. Autom. Reason. 46, 43–80 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Konolige, K.: Abduction versus closure in causal theories. Artif. Intell. 53, 255–272 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for \(\cal{ALC}\) ontologies with ABoxes. In: Proceedings of AAAI 2015, pp. 175–181. AAAI Press (2015)Google Scholar
  20. 20.
    Koopmann, P., Schmidt, R.A.: LETHE: saturation based reasoning for non-standard reasoning tasks. In: Proceedings of ORE 2015. CEUR Workshop Proceedings, vol. 1387, pp. 23–30. CEUR-WS.org (2015)Google Scholar
  21. 21.
    Lambrix, P., Dragisic, Z., Ivanova, V.: Get my pizza right: repairing missing is-a relations in \(\cal{ALC}\) ontologies. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 17–32. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37996-3_2CrossRefGoogle Scholar
  22. 22.
    Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128, 143–159 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ludwig, M., Konev, B.: Practical uniform interpolation and forgetting for ALC TBoxes with applications to logical difference. In: Proceedings of KR 2014, pp. 318–327. AAAI Press (2014)Google Scholar
  24. 24.
    Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive description logics. In: Proceedings of IJCAI 2011, pp. 989–995. AAAI Press (2011)Google Scholar
  25. 25.
    Matentzoglu, N., Parsia, B.: Bioportal snapshot 30.03.2017 [data set] (2017). Zenodo:  https://doi.org/10.5281/zenodo.439510
  26. 26.
    Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44960-4_8CrossRefGoogle Scholar
  27. 27.
    Pukancová, J., Homola, M.: Tableau-based ABox abduction for the \(\cal{ALCHO}\) description logic. In: Proceedings of DL 2017. CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org (2017)Google Scholar
  28. 28.
    Raghavan, S., Mooney, R.: Bayesian abductive logic programs. In: AAAI 2010 Workshop on Statistical Relational AI, pp. 82–87. AAAI Press (2010)Google Scholar
  29. 29.
    Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7, 329–340 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wernhard, C.: Abduction in logic programming as second-order quantifier elimination. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 103–119. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40885-4_8CrossRefGoogle Scholar
  31. 31.
    Zhao, Y.: Automated semantic forgetting for expressive description logics. Ph.D. thesis, The University of Manchester, UK (2018)Google Scholar
  32. 32.
    Zhao, Y., Schmidt, R.A.: Concept forgetting in \(\cal{ALCOI}\)-ontologies using an Ackermann approach. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 587–602. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_34CrossRefGoogle Scholar
  33. 33.
    Zhao, Y., Schmidt, R.A.: Forgetting concept and role symbols in \(\cal{ALCOIH}\mu ^{+}(\nabla ,\sqcap )\)-ontologies. In: Proceedigs of IJCAI 2016, pp. 1345–1352. AAAI Press (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations