Symmetry Avoidance in MACE-Style Finite Model Finding

  • Giles RegerEmail author
  • Martin Riener
  • Martin Suda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11715)


This work considers the MACE-style approach to finite model finding for (multi-sorted) first-order logic. This existing approach iteratively assumes increasing domain sizes and encodes the corresponding model existence problem as a SAT problem. The original MACE tool and its successors have considered techniques for avoiding introducing symmetries in the resulting SAT problem, but this has never been the focus of the previous work and has not received concentrated attention. In this work we formalise the symmetry avoiding problem, characterise the notion of a sound symmetry breaking heuristic, propose a number of such heuristics and evaluate them experimentally with an implementation in the Vampire theorem prover. Our results demonstrate that these new heuristics improve performance on a number of benchmarks taken from SMT-LIB and TPTP. Finally, we show that direct symmetry breaking techniques could be used to improve finite model finding, but that their cost means that symmetry avoidance is still the preferable approach.



We thank the anonymous reviewers for critically reading the paper and suggesting substantial improvements.


  1. 1.
    Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for Boolean satisfiability. In: Proceedings of the 40th Design Automation Conference, DAC 2003, Anaheim, CA, USA, 2–6 June 2003, pp. 836–839 (2003)Google Scholar
  2. 2.
    Audemard, G., Henocque, L.: The eXtended least number heuristic. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 427–442. Springer, Heidelberg (2001). Scholar
  3. 3.
    Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J. Autom. Reason. 47(2), 111–132 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: CADE-19 Workshop: Model Computation - Principles, Algorithms and Applications (2003)Google Scholar
  5. 5.
    Darga, P.T., Katebi, H., Liffiton, M., Markov, I.L., Sakallah, K.: Saucy.
  6. 6.
    Darga, P T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Proceedings of the 41st Design Automation Conference, DAC 2004, San Diego, CA, USA, 7–11 June 2004, pp. 530–534. ACM (2004)Google Scholar
  7. 7.
    Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 104–122. Springer, Cham (2016). Scholar
  8. 8.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). Scholar
  9. 9.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in practice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Rafael (2012)Google Scholar
  10. 10.
    Gent, I.P., Petrie, K.E., Puget, J.: Symmetry in constraint programming. In: Handbook of Constraint Programming, pp. 329–376 (2006)CrossRefGoogle Scholar
  11. 11.
    SAT Competitions: SAT Competition 2009: Benchmark Submission Guidelines.
  12. 12.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). Scholar
  13. 13.
    Mccune, W.: A Davis-Putnam program and its application to finite first-order model search: quasigroup existence problems. Technical report, Argonne National Laboratory (1994)Google Scholar
  14. 14.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of Automated Reasoning (in 2 volumes), pp. 335–367 (2001)CrossRefGoogle Scholar
  15. 15.
    Reger, G., Suda, M., Voronkov, A.: The challenges of evaluating a new feature in vampire. In: Proceedings of the 1st and 2nd Vampire Workshops. EPiC Series in Computing, vol. 38, pp. 70–74. EasyChair (2016)Google Scholar
  16. 16.
    Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 323–341. Springer, Cham (2016). Scholar
  17. 17.
    Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In: GCAI 2016, 2nd Global Conference on Artificial Intelligence. EPiC Series in Computing, vol. 41, pp. 11–23. EasyChair (2016)Google Scholar
  18. 18.
    Sakallah, K.A.: Symmetry and satisfiability. In: Handbook of Satisfiability, pp. 289–338 (2009)Google Scholar
  19. 19.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving service (2012).
  20. 20.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vakili, A., Day, N.A.: Finite model finding using the logic of equality with uninterpreted functions. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 677–693. Springer, Cham (2016). Scholar
  22. 22.
    Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI 1995, pp. 298–303 (1995)Google Scholar
  23. 23.
    Zhang, J., Zhang, H.: System description generating models by SEM. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, Heidelberg (1996). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK
  2. 2.Czech Technical UniversityPragueCzech Republic

Personalised recommendations