Skip to main content

Interpretable Text-to-Image Synthesis with Hierarchical Semantic Layout Generation

  • Chapter
  • First Online:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

Generating images from natural language description has drawn a lot of attention in the research community for its practical usefulness and for understanding the method in which the model relates text with visual concepts by synthesizing them. Deep generative models have been successfully employed to address this task, which formulates the problem as a translation task from text to image. However, learning a direct mapping from text to image is challenging due to the complexity of the mapping and makes it difficult to understand the underlying generation process. To address these issues, we propose a novel hierarchical approach for text-to-image synthesis by inferring a semantic layout. Our algorithm decomposes the generation process into multiple steps. First, it constructs a semantic layout from the text using the layout generator and then converts the layout to an image with the image generator. The proposed layout generator progressively constructs a semantic layout in a coarse-to-fine manner by generating object bounding boxes and refining each box by estimating the object shapes inside the box. The image generator synthesizes an image conditioned on the inferred semantic layout, which provides a useful semantic structure of an image matching the text description. Conditioning the generation with the inferred semantic layout allows our model to generate semantically more meaningful images and provides interpretable representations to allow users to interactively control the generation process by modifying the layout. We demonstrate the capability of the proposed model on the challenging MS-COCO dataset and show that the model can substantially improve the image quality and interpretability of the output and semantic alignment to input text over existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(G_\text {global}\) is computed by summation to model overlaps between objects.

References

  1. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: ACL, pp. 228–231 (2005)

    Google Scholar 

  2. Cha, M., Gwon, Y., Kung, H.T.: Adversarial nets with perceptual losses for text-to-image synthesis. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2017)

    Google Scholar 

  3. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV (2017)

    Google Scholar 

  4. Dash, A., Gamboa, J.C.B., Ahmed, S., Afzal, M.Z., Liwicki, M.: TAC-GAN-Text Conditioned Auxiliary Classifier Generative Adversarial Network. arXiv preprint arXiv:1703.06412 (2017)

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  6. Dong, H., Yu, S., Wu, C., Guo, Y.: Semantic image synthesis via adversarial learning. In: ICCV, pp. 5707–5715 (2017)

    Google Scholar 

  7. Dong, H., Zhang, J., McIlwraith, D., Guo, Y.: I2T2I: learning text to image synthesis with textual data augmentation. In: ICIP, pp. 2015–2019 (2017)

    Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial networks. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  9. Ha, D., Eck, D.: A neural representation of sketch drawings. In: ICLR (2018)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976 (2017)

    Google Scholar 

  12. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV, pp. 694–711 (2016)

    Google Scholar 

  13. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: CVPR, pp. 1219–1228 (2018)

    Google Scholar 

  14. Karacan, L., Akata, Z., Erdem, A., Erdem, E.: Learning to generate images of outdoor scenes from attributes and semantic layouts. CoRR (2016)

    Google Scholar 

  15. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV, pp. 740–755 (2014)

    Chapter  Google Scholar 

  16. Mansimov, E., Parisotto, E., Ba, J.: Generating images from captions with attention. In: ICLR (2016)

    Google Scholar 

  17. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  18. Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., Clune, J.: Plug & play generative networks: conditional iterative generation of images in latent space. In: CVPR, pp. 3510–3520 (2017)

    Google Scholar 

  19. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729 (2008)

    Google Scholar 

  20. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML, pp. 2642–2651 (2017)

    Google Scholar 

  21. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  22. Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: CVPR, pp. 49–58 (2016)

    Google Scholar 

  23. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML, pp. 1060–1069 (2016)

    Google Scholar 

  24. Reed, S., et al.: Parallel multiscale autoregressive density estimation. In: ICML, pp. 2912–2921 (2017)

    Google Scholar 

  25. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: NIPS, pp. 217–225 (2016)

    Google Scholar 

  26. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 2234–2242 (2016)

    Google Scholar 

  27. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL, pp. 2556–2565 (2018)

    Google Scholar 

  28. Sharma, S., Suhubdy, D., Michalski, V., Ebrahimi Kahou, S., Bengio, Y.: Chatpainter: improving text to image generation using dialogue. In: ICLR (2018)

    Google Scholar 

  29. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS, pp. 802–810 (2015)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  32. Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: CVPR, pp. 4566–4575 (2015)

    Google Scholar 

  33. Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H.: Learning to generate long-term future via hierarchical prediction. In: ICML, pp. 3560–3569 (2017)

    Google Scholar 

  34. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: CVPR, pp. 3156–3164 (2015)

    Google Scholar 

  35. Wang, C., Xu, C., Wang, C., Too, D.: Perceptual adversarial networks for image-to-image transformation. IEEE Trans. Image Process. 27(8), 4066–4079 (2017)

    Article  MathSciNet  Google Scholar 

  36. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: ECCV, pp. 318–335 (2016)

    Chapter  Google Scholar 

  37. Welinder, P., et al.: Caltech-UCSD Birds 200. Technical Report. CNS-TR-2010-001, California Institute of Technology (2010)

    Google Scholar 

  38. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: CVPR, pp. 1316–1324 (2018)

    Google Scholar 

  39. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV, pp. 5908–5916 (2017)

    Google Scholar 

  40. Zhang, Z., Xie, Y., Yang, L.: Photographic text-to-image synthesis with a hierarchically-nested adversarial network. In: CVPR, pp. 1520–1529 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglak Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, S., Yang, D., Choi, J., Lee, H. (2019). Interpretable Text-to-Image Synthesis with Hierarchical Semantic Layout Generation. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics