Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Electrochemical cells based on alkali metal (Li, Na) anodes have attracted significant recent attention because of their promise for producing large increases in gravimetric energy density for energy storage in batteries. To facilitate stable, long-term operation of such cells, a variety of structured electrolytes have been designed in different physical forms, ranging from soft polymer gels to hard ceramics, including porous ceramics that host a liquid or molten polymer in their pores. In almost every case, the electrolytes are reported to be substantially more effective than anticipated by early theories in improving uniformity of deposition and lifetime of the metal anode. These observations have been speculated to reflect the effect of electrolyte structure in regulating ion transport to the metal-electrolyte interface, thereby stabilizing metal electrodeposition processes at the anode. Here, we create and study model structured electrolytes composed of covalently linked polymer-grafted nanoparticles that host a liquid electrolyte in the pores. The electrolytes exist as freestanding membranes with effective pore size that can be systematically manipulated through straightforward control of the volume fraction of the nanoparticles. By means of physical analysis and direct visualization experiments, we report that at current densities approaching the diffusion limit, there is a clear transition from unstable to stable electrodeposition at Li metal electrodes in membranes with average pore sizes below 500 nm. We show that this transition is consistent with expectations from a recent theoretical analysis that takes into account local coupling between stress and ion transport at metal-electrolyte interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  Google Scholar 

  2. Cheng, X., et al.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1–20 (2016)

    CAS  Google Scholar 

  3. Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)

    Article  CAS  Google Scholar 

  4. Ma, L., Hendrickson, K.E., Wei, S., Archer, L.A.: Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today. 10, 315–338 (2015)

    Article  CAS  Google Scholar 

  5. Zhang, W., et al.: Design principles of functional polymer separators for high-energy, metal-based batteries. Small. 1703001–n/a. https://doi.org/10.1002/smll.201703001

    Article  Google Scholar 

  6. Wei, S., Choudhury, S., Tu, Z., Zhang, K., Archer, L.A.: Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. (2017). https://doi.org/10.1021/acs.accounts.7b00484

    Article  Google Scholar 

  7. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016)

    Article  Google Scholar 

  8. Chazalviel, J.-N.: Electrochemical aspects of the generation of rampified metallic electrodeposits. Phys. Rev. A. 42, 7355–7367 (1990)

    Article  CAS  Google Scholar 

  9. Bai, P., Li, J., Brushett, F.R., Bazant, M.Z.: Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016)

    Article  CAS  Google Scholar 

  10. Choudhury, S., et al.: Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017)

    Article  CAS  Google Scholar 

  11. Choudhury, S., Wei, S., Ozhabes, Y., Gunceler, D., Nath, P.: Designing solid-liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017)

    Article  Google Scholar 

  12. Wood, K.N., et al.: Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016)

    Article  CAS  Google Scholar 

  13. Zheng, G., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    Article  CAS  Google Scholar 

  14. Monroe, C., Newman, J.: The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004)

    Article  CAS  Google Scholar 

  15. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005)

    Article  CAS  Google Scholar 

  16. Stone, G.M., et al.: Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012)

    Article  CAS  Google Scholar 

  17. Agrawal, A., Choudhury, S., Archer, L.A.: A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Adv. 5, 20800–20809 (2015)

    Article  CAS  Google Scholar 

  18. Choudhury, S., Mangal, R., Agrawal, A., Archer, L.A.: A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015)

    Article  CAS  Google Scholar 

  19. Lu, Y., Korf, K., Kambe, Y., Tu, Z., Archer, L.A.: Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. 126, 498–502 (2014)

    Article  Google Scholar 

  20. Zhang, J., Sun, B., Huang, X., Chen, S., Wang, G.: Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 4, 6007 (2014)

    Article  CAS  Google Scholar 

  21. Stephan, A.M.: Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006)

    Article  Google Scholar 

  22. Wu, H., et al.: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    Article  Google Scholar 

  23. Khurana, R., Schaefer, J.L., Archer, L.A., Coates, G.W.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014)

    Article  CAS  Google Scholar 

  24. Porcarelli, L., Gerbaldi, C., Bella, F., Nair, J.R.: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 6, 19892 (2016)

    Article  CAS  Google Scholar 

  25. Long, L., Wang, S., Xiao, M., Meng, Y.: Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A. 4, 10038–10069 (2016)

    Article  CAS  Google Scholar 

  26. Gurevitch, I., et al.: Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013)

    Article  CAS  Google Scholar 

  27. Zhao, C.-Z., et al.: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. 114, 11069 LP-11074 (2017)

    Google Scholar 

  28. Tu, Z., et al.: Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule. (2017). https://doi.org/10.1016/j.joule.2017.06.002

    Article  CAS  Google Scholar 

  29. Choudhury, S., et al.: Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv. 3, e1602809 (2017)

    Article  Google Scholar 

  30. Ma, L., Nath, P., Tu, Z., Tikekar, M., Archer, L.A.: Highly conductive, sulfonated, UV-cross-linked separators for Li–S batteries. Chem. Mater. 28, 5147–5154 (2016)

    Article  CAS  Google Scholar 

  31. Lu, Y., et al.: Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015)

    Article  Google Scholar 

  32. Oh, H., et al.: Poly(arylene ether)-based single-ion conductors for lithium-ion batteries. Chem. Mater. 28, 188–196 (2016)

    Article  CAS  Google Scholar 

  33. Bouchet, R., et al.: Single-ion BAB triblock copolymers as efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

    Article  CAS  Google Scholar 

  34. Choudhury, S., Archer, L.A.: Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 1–6 (2015). https://doi.org/10.1002/aelm.201500246

    Article  Google Scholar 

  35. Lu, Y., Tu, Z., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014)

    Article  CAS  Google Scholar 

  36. Seh, Z.W., Sun, J., Sun, Y., Cui, Y.: A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015)

    Article  CAS  Google Scholar 

  37. Zhang, X., Cheng, X., Chen, X., Yan, C., Zhang, Q.: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017)

    Article  Google Scholar 

  38. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014)

    Article  CAS  Google Scholar 

  39. Choudhury, S., Agrawal, A., Kim, S.A., Archer, L.A.: Self-suspended suspensions of covalently grafted hairy nanoparticles. Langmuir. 31, 3222–3231 (2015)

    Article  CAS  Google Scholar 

  40. Choudhury, S., Agrawal, A., Wei, S., Jeng, E., Archer, L.A.: Hybrid hairy nanoparticle electrolytes stabilizing lithium metal batteries. Chem. Mater. 28, 2147–2157 (2016)

    Article  CAS  Google Scholar 

  41. Wei, S., et al.: Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 29, 1605512 (2017)

    Article  Google Scholar 

  42. Stalin, S., Choudhury, S., Zhang, K., Archer, L.A.: Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chem. Mater. 30, 2058–2066 (2018)

    Article  CAS  Google Scholar 

  43. Agarwal, P., Kim, S.A., Archer, L.A.: Crowded, confined, and frustrated: dynamics of molecules tethered to nanoparticles. Phys. Rev. Lett. 109, 258301 (2012)

    Article  Google Scholar 

  44. Ding, Y., et al.: Dielectric spectroscopy investigation of relaxation in C 60 - polyisoprene nanocomposites. 3201–3206 (2009). https://doi.org/10.1021/ma8024333

    Article  CAS  Google Scholar 

  45. Adachi, K., Kotaka, T.: Dielectric normal mode relaxation. Prog. Polym. Sci. 18, 585–622 (1993)

    Article  CAS  Google Scholar 

  46. Nyman, A., Behm, M., Lindbergh, G.: Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte. Electrochim. Acta. 53, 6356–6365 (2008)

    Article  CAS  Google Scholar 

  47. Valoen, L.O., Reimers, J.N.: Transport properties of LiPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 152, A882 (2005)

    Article  CAS  Google Scholar 

  48. Tu, Z., Nath, P., Lu, Y., Tikekar, M.D., Archer, L.A.: Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015)

    Article  CAS  Google Scholar 

  49. Tu, Z., et al.: Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv. Energy Mater. 7, 1602367 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation, Division of Materials Research, through Award No. DMR–1609125.

Author information

Authors and Affiliations

Authors

Appendix: Supplementary Information

Appendix: Supplementary Information

Supplementary Fig. 4.1
figure 6

Dielectric relaxation of cross-linked hairy nanoparticles: (a, b) Dielectric permittivity at various temperatures fitted with the H-N model for Neat PPO and cross-linked hairy nanoparticles, respectively; (c) polymer relaxation time as a function of temperatures fitted with a VFT model; (d) comparison between the dielectric strength between the neat PPO and cross-linked PPO; the symbols are the same as in part c

Supplementary Fig. 4.2
figure 7

Characterization of pore architecture in the cross-linked structure: (a) TEM micrographs of cross-linked nanoparticles. The scale bar represents 200 nm. From left to right, the samples are r.c.p. pore sizes 20 nm, 100 nm, and 500 nm. (b) Storage modulus and (c) loss modulus obtained through frequency sweep measurements at strain of 5% for different cross-linked samples and neat PPO at 60 °C

Supplementary Fig. 4.3
figure 8

Normal distribution of interparticle distances obtained by analysis of TEM images for cross-linked hairy nanoparticles with different random closed packing pore sizes

Supplementary Fig. 4.4
figure 9

Polarization of a symmetric lithium cell using the cross-linked hairy nanoparticle electrolyte (r.c.p. = 20 nm) soaked with the electrolyte 1 M EC/DMC LiPF6 at 20 mV. The inset shows the impedance results before and after polarization

Supplementary Fig. 4.5
figure 10

Room temperature conductivity and limiting current density variation with different pore-sized membranes. The arrows show the corresponding values for a neat electrolyte of 1 M EC/MC LiPF6

Supplementary Fig. 4.6
figure 11

Schematic representing the idea that the pore size of the electrolyte/separator is important and related to the stability of electrodeposition. In this figure, the cross-linked nanoparticles have random closed packing pore size of 20 nm

Supplementary Fig. 4.7
figure 12

Charge and discharge cycles in a symmetric lithium coin cell using the cross-linked hairy nanoparticles electrolyte with pore size of 20 nm. The battery was operated at a current density of 0.1 mA/cm2 with each half cycle being 3-h long

Supplementary Fig. 4.8
figure 13

(a, b) SEM images of lithium electrode surface before and after cycling in a symmetric lithium cell for 100 h at 0.1 mA/cm2

Supplementary Fig. 4.9
figure 14

Electrodeposition with different pore sizes of the cross-linked nanoparticles: Snapshots of the electrode and cross-linked electrolyte with pore sizes of 1000, 500, and 100 nm in every 15 min during charging at the rate of 8 mA cm−2

Supplementary Fig. 4.10
figure 15

Height of dendrite at various points of the electrode for the initial 1500 s. The inset compares the growth rate by assuming a linear growth for the visualization experiment in Figure S9 at a current density of 8 mA cm−2

Supplementary Fig. 4.11
figure 16

(a) Snapshots of electrodeposition with different cross-linked membrane pore sizes at variable current density such that the J/J∗ is maintained at 0.9 for each case; (b) height of dendrite as a function of time for different samples. The absolute values of current densities are reported in the label that correspond to J/J = 0.9. The inset shows the comparison of the dendrite growth rates for the respective pore sizes reported in the main figure

Supplementary Fig. 4.12
figure 17

Pore size dependence of dendrite growth at a current density of 8 mA/cm2, where the pore size is obtained from the TEM analysis. The inset shows the growth rate as a function of pore volume obtained from the plateau modulus using the equation (kT/G’)

Supplementary Fig. 4.13
figure 18

Critical pore size, representative of crossover from positive to zero growth rate, at various normalized current density. The inset shows the same graph in semilogarithmic scale

Supplementary Table 4.1 VFT parameters for fitting the dielectric relaxation times at different temperatures for the cross-linked and neat PPO
Supplementary Table 4.2 Weight fraction of silica nanoparticles corresponding to the effective pore size obtained by the random packing fraction spherical particles

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhury, S. (2019). Confining Electrodeposition of Metals in Structured Electrolytes. In: Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28943-0_4

Download citation

Publish with us

Policies and ethics