Skip to main content

GANonymizer: Image Anonymization Method Integrating Object Detection and Generative Adversarial Network

  • Conference paper
  • First Online:
3rd EAI International Conference on IoT in Urban Space (Urb-IoT 2018)

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Included in the following conference series:

Abstract

Sharing and analyzing image data from ubiquitous urban cameras must enable us to understand and predict various contexts of the city. Meanwhile, since such image data always contains privacy data such as people and cars, we cannot easily share and analyze the data through the Internet for the viewpoint of privacy protection. As a result, most of urban image data are only kept/shared within the camera owners, or even discarded to reduce risks of privacy data leakage. To solve the privacy problem and accelerate sharing of urban image data, we propose GANonymizer that automatically detects and removes objects related to privacy from the urban images. GANonymizer combines two neural networks: (1) a network which detects objects related to privacy such as persons and cars in an input image using object detection network and (2) a network that removes the detected objects naturally as though they are not exist originally. Through our experiment of applying GANonymizer to urban video images, we confirmed that GANonymizer partially achieved natural removal of objects related to privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acs, G., Melis, L., Castelluccia, C., De Cristofaro, E.: Differentially private mixture of generative neural networks. In: IEEE Transactions on Knowledge and Data Engineering (2018)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Barnich, O., Van Droogenbroeck, M.: Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: PriSurv: privacy protected video surveillance system using adaptive visual abstraction. In: International Conference on Multimedia Modeling, pp. 144–154. Springer, Berlin (2008)

    Google Scholar 

  5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 107 (2017)

    Article  Google Scholar 

  7. Kawano, M., Mikami, K., Yokoyama, S., Yonezawa, T., Nakazawa, J.: Road marking blur detection with drive recorder. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4092–4097. IEEE, Piscataway (2017)

    Google Scholar 

  8. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions (2018). Preprint arXiv:1807.03039

    Google Scholar 

  9. Le, T., Almansa, A., Gousseau, Y., Masnou, S.: Motion-consistent video inpainting. In: ICIP 2017: IEEE International Conference on Image Processing (2017)

    Google Scholar 

  10. Liu, Y., Wu, L.: Geological disaster recognition on optical remote sensing images using deep learning. Procedia Comput. Sci. 91, 566–575 (2016)

    Article  Google Scholar 

  11. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer, Berlin (2016)

    Google Scholar 

  12. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection using deep neural networks with images captured through a smartphone (2018). Preprint arXiv:1801.09454

    Google Scholar 

  13. Morishita, S., Maenaka, S., Nagata, D., Tamai, M., Yasumoto, K., Fukukura, T., Sato, K.: Sakurasensor: quasi-realtime cherry-lined roads detection through participatory video sensing by cars. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 695–705. ACM, New York (2015)

    Google Scholar 

  14. Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Video inpainting of complex scenes. SIAM J. Imag. Sci. 7(4), 1993–2019 (2014)

    Article  MathSciNet  Google Scholar 

  15. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  16. Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action detection (2018). Preprint arXiv:1803.11556

    Google Scholar 

  17. Shaikh, S.H., Saeed, K., Chaki, N.: Moving object detection using background subtraction. In: Moving Object Detection Using Background Subtraction, pp. 15–23. Springer, Cham (2014)

    Google Scholar 

  18. Shetty, R., Fritz, M., Schiele, B.: Adversarial scene editing: automatic object removal from weak supervision (2018). Preprint arXiv:1806.01911

    Google Scholar 

  19. Shu, J., Zheng, R., Hui, P.: Cardea: context-aware visual privacy protection from pervasive cameras (2016). Preprint arXiv:1610.00889

    Google Scholar 

  20. Wu, Z., Wang, Z., Wang, Z., Jin, H.: Towards privacy-preserving visual recognition via adversarial training: a pilot study (2018). Preprint arXiv:1807.08379

    Google Scholar 

  21. Yu, H., Lim, J., Kim, K., Lee, S.B.: Pinto: enabling video privacy for commodity IoT cameras. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1089–1101. ACM, New York (2018)

    Google Scholar 

Download references

Acknowledgement

Part of this research was supported by National Institute of Information and Communications Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Tanimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanimura, T., Kawano, M., Yonezawa, T., Nakazawa, J. (2020). GANonymizer: Image Anonymization Method Integrating Object Detection and Generative Adversarial Network. In: José, R., Van Laerhoven, K., Rodrigues, H. (eds) 3rd EAI International Conference on IoT in Urban Space. Urb-IoT 2018. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-28925-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28925-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28924-9

  • Online ISBN: 978-3-030-28925-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics