Skip to main content

Airborne Geophysical Surveys and Their Integrated Interpretation

Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Airborne geophysical survey is a very useful method to investigate large areas quickly without harming the natural setting of the local environment. Mapping a large survey area with extreme topography is a very difficult and expensive task to be done by ground based geophysical and geological methods. A continuous development in hardware, software and instrumentation has made resolution of airborne geophysical surveys as precise as ground based geophysical surveys. This chapter is focused on airborne geophysical surveys routinely done generally for geological mapping and their integrated interpretation together with ground geophysical surveys. The chapter provides a brief introduction of airborne surveys including magnetic, radiometry and electromagnetic. Data acquisition, processing, and interpretation of airborne data are discussed from the experience and practice followed at Geological Survey of Norway (NGU). Integrated use of airborne and ground geophysical data and its application for environmental hazard and mineral exploration is shown using three examples from three different regions in Norway.

Keywords

  • Airborne geophysics
  • Magnetic
  • Radiometry
  • Exploration
  • Electromagnetic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-28909-6_14
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-28909-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7
Fig. 14.8
Fig. 14.9
Fig. 14.10
Fig. 14.11
Fig. 14.12

References

  • AarhusInv (2015) Manual for inversion program ver. 6.3 HydroGeophysics Group (HGG), University of Aarhus, Denmark. http://www.hgg.geo.au.dk/HGGsoftware/em1dinv/em1dinv_manual.pdf

  • Abraham JD, Cannia JC, Bedrosian PA, Johnson MR, Ball LB, Sibray SS (2011) Airborne electromagnetic mapping of the base of aquifer in areas of western nebraska. USGS scientific investigations report 2011-5219

    Google Scholar 

  • Auken E, Christiansen AV (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics 69:752–761

    CrossRef  Google Scholar 

  • Auken E, Boesen T, Christiansen AV (2017) A review of airborne electromagnetic methods with focus on geotechnical and hydrological applications from 2007 to 2017. Adv Geophys 58:47–93

    CrossRef  Google Scholar 

  • Baranwal V, Walker P, Koziel J, Møller T, Rønning JS (2010) Helicopter-borne geophysical survey over the Kongsberg area of Norway: a new view of an historic mining district. 20th IAGA EMIW, extended abstract

    Google Scholar 

  • Baranwal VC, Ofstad F, Rønning JS, Watson RJ (2011) Mapping of caesium fallout from the Chernobyl accident in the Jotunheimen area. NGU report 2011.062

    Google Scholar 

  • Baranwal VC, Rodionov A, Ofstad F, Koziel J, Lynum R (2013) Helicopter-borne magnetic, electromagnetic and radiometric geophysical surveys in the Kongsberg region: Krøderen, Sokna, Høneføss, Kongsberg and Numedalen. NGU report 2013.029

    Google Scholar 

  • Baranwal VC, Rønning JS, Dalsegg E, Solberg IL, Tønnesen JF, Rodionov A, Dretvik H (2015) Mapping of marine clay layers using airborne EM and ground geophysical methods at Byneset, Trondheim municipality. NGU report 2015.006, p 59

    Google Scholar 

  • Baranwal VC, Dalsegg E, Elvebakk H, Rønning JS, Brönner M (2017a) 3D resistivity interpretation of helicopter-borne frequency-domain EM (HEM) data from Ramså basin and around in Andøya. EAGE, extended abstract

    Google Scholar 

  • Baranwal VC, Rønning JS, Solberg IL, Dalsegg E, Tønnesen JF, Long M, (2017b) Investigation of a sensitive clay landslide area using frequency-domain helicopter-borne EM and ground geophysical methods. In: Thakur V, L’Heureux JS, Locat A (eds) Landslides in sensitive clays, Series in Advances in natural and technological hazards research. Springer International Publishing, pp 475–485

    Google Scholar 

  • Bedrosian P, Schamper C, Auken E (2015) A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies. Geophys Prospect 64:192–215

    CrossRef  Google Scholar 

  • Camara EB, Guimarães SNP (2016) Magnetic airborne survey–geophysical flight. Geosci Instrum Methods Data Syst 5:181–192

    CrossRef  Google Scholar 

  • Christensen CW, Pfaffhuber AA, Anschütz H, Smaavik TF (2015) Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking. J Appl Geophys 119:178–191

    CrossRef  Google Scholar 

  • Connor D, Martin PG, Scott TB (2016) Airborne radiation mapping: overview and application of current and future aerial systems. Int J Remote Sens 37(24):5953–5987

    CrossRef  Google Scholar 

  • Dickson NEM, Comte JC, McKinley J, Ofterdinger U (2014) Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland. Water Resour Res 50:7984–8001

    CrossRef  Google Scholar 

  • Elkhadragy AA, Ismail AA, Eltarras MM, Azzazy AA (2017) Utilization of airborne gamma ray spectrometric data for radioactive mineral exploration of G. Abu Had—G. Umm Qaraf area, South Eastern Desert, Egypt. NRIAG J Astron Geophys 6(1):48–161

    CrossRef  Google Scholar 

  • Fairhead JD (2015) Advances in gravity and magnetic processing and interpretation. EAGE-ebook

    Google Scholar 

  • Foley N, Tulaczyk S, Auken E, Schamper C, Dugan H, Mikucki J, Ross V, Doran PT (2016) Helicopter-borne transient electromagnetics in high-latitude environments: an application in the McMurdo Dry Valleys, Antarctica. Geophysics 81:WA87–WA99

    CrossRef  Google Scholar 

  • Gautneb H, Knezevic J, Johannesen NE, Wanvik JE, Engvik A, Davidsen B, Rønning JS (2017) Geological and ore dressing investigations of graphite occurrences in Bø, Sortland, Hadsel and Øksnes municipalities, Vesterålen, Nordland County, Northern Norway 2015–2016, NGU Report 2017.015

    Google Scholar 

  • Geosoft Manual (2005) Helicopter electromagnetic data processing, analysis and presentation system for Oasis montaj v6.2 Geosoft Inc.

    Google Scholar 

  • Heincke BH, Smethurst MA, Bjørlykke A, Dahlgren S, Rønning JS, Mogaard JO (2008) Airborne gamma-ray spectrometer mapping for relating indoor radon concentrations to geological parameters in the Fen region, southeast Norway. NGU Spec Publ 11:131–143

    Google Scholar 

  • Høyer AS, Jørgensen F, Foged N, He X, Christiansen AV (2015) Three-dimensional geological modelling of AEM resistivity data—a comparison of three methods. J Appl Geophys 115:65–78

    CrossRef  Google Scholar 

  • IAEA (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363

    Google Scholar 

  • Legault J (2015) Airborne electromagnetic systems—state of the art and future directions. CSEG Rec 40(6):38–49

    Google Scholar 

  • Liu Y, Farquharson CG, Yin C, Baranwal VC (2018) Wavelet-based 3-D inversion for frequency-domain airborne EM data. Geophys J Int 213:1–15

    CrossRef  Google Scholar 

  • Loke MH (2010) Res2DInv ver. 3.59.102 Geoelectrical Imaging 2D and 3D, Instruction Manual. Geotomo Software, www.geoelectrical.com

  • Lutro O, Nordgulen Ø (2008) Oslofeltet, bedrock map M 1:250000. Geological Survey of Norway (NGU)

    Google Scholar 

  • Maystrenco YP, Gernigon L (2018) 3-D temperature distribution beneath the Mid-Norwegian continental margin (the Vøring and Møre basins). Geophys J Int 212:694–724

    CrossRef  Google Scholar 

  • Maystrenco YP, Gernigon L, Nasuti A, Olesen O (2018) Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3-D density and magnetic modelling. Geophys J Int 212:1696–1721

    CrossRef  Google Scholar 

  • Mishra DC (2011) Gravity and magnetic methods for geological studies: principles, integrated exploration and plate tectonic. BSP Books, Hyderabad, India

    Google Scholar 

  • NVE (Norges vassdrags-og energidirektorat) (2012) Kvikkleireskred ved Esp på Byneset i Trondheim. NVE report 1-2012 (in Norwegian)

    Google Scholar 

  • Okazaki K, Mogi T, Utsugi M, Ito Y, Kunishima H, Yamazaki T, Takahashi Y, Hashimoto T, Ymamaya Y, Ito H, Kaieda H, Tsukuda K, Yuuki Y, Jomori A (2011) Airborne electromagnetic and magnetic surveys for long tunnel construction design. Phys Chem Earth 36(16):1237–1246

    CrossRef  Google Scholar 

  • Oldenborger GA, Logan CE, Hinton MJ, Pugin AJM, Sapia V, Sharpe DR, Russell HAJ (2016) Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data. J Appl Geophys 128:191–201

    CrossRef  Google Scholar 

  • Olesen O, Sandstad JS (1993) Interpretation of the Proterozoic Kautokeino Greenstone Belt, Finnmark, Norway from combined geophysical and geological data. Nor Geol Unders Bull 425:41–62

    Google Scholar 

  • Olesen O, Dehls JF, Ebbing J, Henriksen H, Kihle O, Lundin E (2007) Aeromagnetic mapping of deep-weathered fracture zones in the Oslo Region—a new tool for improved planning of tunnels. Norw J Geol 87:253–267

    Google Scholar 

  • Pedersen JB, Schaars FW, Christiansen AV, Foged N, Schamper C, Rolf H, Auken E (2017) Mapping the fresh-saltwater interface in the coastal zone using high-resolution airborne electromagnetics. First Break 35:57–61

    Google Scholar 

  • Pfaffhuber AA, Lysdahl AOK, Sørmo E, Skurdal GH, Thomassen T, Anschütz H, Scheibz J (2017) Delineating hazardous material without touching—AEM mapping of Norwegian alum shale. First Break 35:35–39

    Google Scholar 

  • Reeves C (2005) Aeromagnetic surveys: principles, practice & interpretation. Geosoft Inc.

    Google Scholar 

  • Reite AJ, Sveian H, Erichsen E (1999) Trondheim fra istid til nåtid—landskapshistorie og løsmasser. NGU Gråsteinen 5 (in Norwegian)

    Google Scholar 

  • Reynolds J (2011) An introduction to applied and environmental geophysics, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Rønning JS, Larsen BE, Elvebakk H, Gautneb H, Ofstad F, Knežević J (2017) Geophysical investigations of graphite occurrences in Bø and Øksnes municipalities, Vesterålen, Nordland County, Northern Norway 2015-2016. NGU Report 2017.014

    Google Scholar 

  • Rønning JS, Gautneb H, Larsen BE, Knežević J, Elvebakk H, Baranwal VC, Gellein J, Ofstad F (2018) Geophysical and geological investigations of graphite occurrences in Vesterålen and Lofoten, Northern Norway 2017. NGU report 2018.011

    Google Scholar 

  • Salem A, Williams S, Fairhead D, Smith R, Ravat D (2008) Interpretation of magnetic data using tilt-angle derivatives. Geophysics 73:L1–L10

    CrossRef  Google Scholar 

  • Siemon B, Christiansen AV, Auken E (2009) A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf Geophys 7:629–646

    CrossRef  Google Scholar 

  • Smethurst MA, Watson RJ, Baranwal VC, Rudjord AL, Finne I (2017) The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: a strong case for utilizing airborne data in large-scale radon potential mapping. J Environ Radioact 166(2):321–340

    CrossRef  Google Scholar 

  • Smith R (2010) Airborne electromagnetic methods: applications to minerals, water and hydrocarbon exploration. CSEG Rec 35(3):7–10

    Google Scholar 

  • Smith RS, Rodney K, Hodges G, Lemieux J (2011) A comparison of airborne electromagnetic data with ground resistivity data over the midwest deposit in the Athabasca basin. Near Surf Geophys 9:319–330

    CrossRef  Google Scholar 

  • Solberg IL, Baranwal VC, Dalsegg E, Dretvik H, Gasser D, Rønning JS, Tønnesen JF (2015) Geologi på Byneset: en sammenstilling av geologiske, geofysiske og geotekniske data, NGU report 2015.002 (in Norwegian)

    Google Scholar 

  • Solberg IL, Long M, Baranwal VC, Gylland AS, Rønning JS (2016) Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Eng Geol 208:214–230

    CrossRef  Google Scholar 

  • Spector A, Lawler TL (1995) Application of aeromagnetic data to mineral potential evaluation in Minnesota. Geophysics 60(6):1704–1714

    CrossRef  Google Scholar 

  • Stampolidis A, Ofstad F, Baranwal VC (2013) Helicopter-borne magnetic and radiometric geophysical survey in the Kviteseid-Notodden-Ulefoss area, Telemark County. NGU report 2013.049

    Google Scholar 

  • Supper R, Baron I, Ottowitz D, Motschka K, Gruber S, Winkler E, Jochum B, Römer A (2013) Airborne geophysical mapping as an innovative methodology for landslide investigation: evaluation of results from the Gschliefgraben landslide, Austria. Nat Hazards Earth Syst Sci 13:3313–3328

    CrossRef  Google Scholar 

  • Valleau NC (2000) HEM data processing—a practical overview. Explor Geophys 31:584–594

    CrossRef  Google Scholar 

  • Viezzoli A, Auken E, Munday T (2009) Spatially constrained inversion for quasi 3D modelling of airborne electromagnetic data—an application for environmental assessment in the Lower Murray Region of South Australia. Explor Geophys 40(2):173–183

    CrossRef  Google Scholar 

  • Youssef MAS (2016) Estimating and interpretation of radioactive heat production using airborne gamma-ray survey data of Gabal Arrubushi area, Central Eastern Desert, Egypt. J Afr Earth Sci 114:67–73

    CrossRef  Google Scholar 

Download references

Acknowledgements

We will like to acknowledge all our colleagues at NGU who were involved in one or other way with different types of geological and geophysical work presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. C. Baranwal or J. S. Rønning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Baranwal, V.C., Rønning, J.S. (2020). Airborne Geophysical Surveys and Their Integrated Interpretation. In: Biswas, A., Sharma, S. (eds) Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-28909-6_14

Download citation