Skip to main content

Regional Gene Therapy for Cancer

  • Chapter
  • First Online:
Book cover Cancer Regional Therapy

Abstract

Two successful regional gene therapies have emerged in recent years: chimeric antigen receptor (CAR) T-cell therapy and oncolytic virus therapy. Coupled with the recent advances in the understanding of solid tumor immunology, the success of these therapies illustrates how regional therapy can be combined with efficient gene transfer and immune stimulation to treat solid tumors. CAR T cells and oncolytic viruses leverage the fundamental advantages of regional delivery to accomplish the following three objectives:

  1. 1.

    Enhance delivery of therapeutics to the tumor. Cancer-targeted gene therapy can be inefficient when infused intravenously, owing to the increased volume of distribution, sequestration in other organs, and poor or altered vascularity, which limit drug perfusion into tumor tissue. Regional CAR T-cell administration can bypass these limitations. Oncolytic viruses can be regionally infused or intralesionally injected.

  2. 2.

    Enhance targeting of cancer cells, thereby limiting normal-tissue toxicity. CAR T cells and oncolytic viruses are genetically modified to optimize cancer-specific targeting. The flexibility afforded by genetic engineering allows preferential targeting, infection of cancer cells, and sparing of normal tissues.

  3. 3.

    Generate both a local and a systemic immune response that can target metastatic disease and prevent tumor recurrence. Perhaps, the most impressive feature of these local therapies is their ability to generate an immune response that extends beyond the primary tumor to establish systemic immune surveillance. This immune response follows the tenets of the adaptive immune system: it establishes circulating immune memory that is capable of self-renewal and is long-lasting. Regional delivery of CAR T cells elicits a robust local immune response and establishes systemic immunity. Oncolytic viruses not only target tumors via local cancer cell destruction but also generate a local and systemic immune response. The regression of metastatic lesions following local delivery of oncolytic virus exemplifies the potential to generate systemic immune responses.

In this chapter, we highlight the principles of regional delivery of gene therapies, detail how genetic engineering can be used to specifically target tumor tissue and enhance efficacy and illustrate the uniquely powerful response that can be gained when the immune system is directed to target solid tumors. We also examine the technologies supporting regional delivery and discuss how existing infusion practices are used to treat solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. https://doi.org/10.1158/2159-8290.CD-12-0548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med. 2016;22(1):26–36. https://doi.org/10.1038/nm.4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiesgen S, Chicaybam L, Chintala NK, Adusumilli PS. Chimeric Antigen Receptor (CAR) T-cell therapy for thoracic malignancies. J Thorac Oncol. 2018;13(1):16–26. https://doi.org/10.1016/j.jtho.2017.10.001.

    Article  CAS  PubMed  Google Scholar 

  4. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci. 1993;90(2):720–4. https://doi.org/10.1073/pnas.90.2.720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13(18 Pt 1):5426–35. https://doi.org/10.1158/1078-0432.CCR-07-0674.

    Article  CAS  PubMed  Google Scholar 

  6. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009;106(9):3360–5. https://doi.org/10.1073/pnas.0813101106.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol. 2002;20(1):70–5. https://doi.org/10.1038/nbt0102-70.

    Article  CAS  PubMed  Google Scholar 

  8. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66(22):10995–1004. https://doi.org/10.1158/0008-5472.CAN-06-0160.

    Article  CAS  PubMed  Google Scholar 

  9. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64. https://doi.org/10.1038/mt.2009.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–6. https://doi.org/10.1172/JCI46110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25. https://doi.org/10.1126/scitranslmed.3008226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S, Chen X, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35(26):3010–20. https://doi.org/10.1200/jco.2017.72.8519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. https://doi.org/10.1056/NEJMoa1708566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44. https://doi.org/10.1172/jci83092.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6(261):261ra151. https://doi.org/10.1126/scitranslmed.3010162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ, et al. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther. 2016;23(5):142–8. https://doi.org/10.1038/cgt.2016.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schuberth PC, Hagedorn C, Jensen SM, Gulati P, van den Broek M, Mischo A, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med. 2013;11:187. https://doi.org/10.1186/1479-5876-11-187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015;4(3):e994446. https://doi.org/10.4161/2162402X.2014.994446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, et al. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother. 2015;64(7):817–29. https://doi.org/10.1007/s00262-015-1692-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D’Apuzzo M, et al. Stem-like tumor-initiating cells isolated from IL13Ralpha2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T cells. Clin Cancer Res. 2012;18(8):2199–209. https://doi.org/10.1158/1078-0432.CCR-11-1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao WP, Zhu B, Duan YZ, Chen ZT. Neutralization of complement regulatory proteins CD55 and CD59 augments therapeutic effect of herceptin against lung carcinoma cells. Oncol Rep. 2009;21(6):1405–11.

    CAS  PubMed  Google Scholar 

  22. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. https://doi.org/10.1182/blood-2013-03-490565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. https://doi.org/10.1056/NEJMoa1302369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013;19(20):5636–46. https://doi.org/10.1158/1078-0432.ccr-13-0458.

    Article  CAS  PubMed  Google Scholar 

  27. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.

    CAS  PubMed  Google Scholar 

  28. Mayor M, Yang N, Sterman D, Jones DR, Adusumilli PS. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials. Eur J Cardiothorac Surg. 2016;49(5):1324–33. https://doi.org/10.1093/ejcts/ezv371.

    Article  PubMed  Google Scholar 

  29. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5(9):915–9. https://doi.org/10.1158/2159-8290.cd-15-0563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGray AJ, Hallett R, Bernard D, Swift SL, Zhu Z, Teoderascu F, et al. Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor. Mol Ther. 2014;22(1):206–18. https://doi.org/10.1038/mt.2013.255.

    Article  CAS  PubMed  Google Scholar 

  31. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. https://doi.org/10.1126/scitranslmed.3006504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res. 2014;20(16):4262–73. https://doi.org/10.1158/1078-0432.ccr-13-2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res. 2016;4(10):869–80. https://doi.org/10.1158/2326-6066.cir-15-0230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep. 2017;7(1):10541. https://doi.org/10.1038/s41598-017-10940-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016;76(6):1578–90. https://doi.org/10.1158/0008-5472.can-15-2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7(1):737. https://doi.org/10.1038/s41598-017-00462-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res. 2017;23(22):6982–92. https://doi.org/10.1158/1078-0432.CCR-17-0867.

    Article  CAS  PubMed  Google Scholar 

  38. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, et al. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol. 2011;29(1):73–8. https://doi.org/10.1038/nbt.1717.

    Article  CAS  PubMed  Google Scholar 

  39. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Therapy Oncolytics. 2016;3:16011. https://doi.org/10.1038/mto.2016.11.

    Article  CAS  Google Scholar 

  40. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4(132):132ra53. https://doi.org/10.1126/scitranslmed.3003761.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83. https://doi.org/10.1056/NEJMoa1106152.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Chang WC, Wong CW, Colcher D, Sherman M, Ostberg JR, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118(5):1255–63. https://doi.org/10.1182/blood-2011-02-337360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cooper LJ, Ausubel L, Gutierrez M, Stephan S, Shakeley R, Olivares S, et al. Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma. Cytotherapy. 2006;8(2):105–17. https://doi.org/10.1080/14653240600620176.

    Article  CAS  PubMed  Google Scholar 

  44. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. https://doi.org/10.1038/mt.2010.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–2. https://doi.org/10.1200/JCO.2006.05.9964.

    Article  PubMed  Google Scholar 

  46. Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015;7(275):275ra22. https://doi.org/10.1126/scitranslmed.aaa4963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 2014;20(4):972–84. https://doi.org/10.1158/1078-0432.CCR-13-0709.

    Article  CAS  PubMed  Google Scholar 

  48. Posey AD Jr, Clausen H, June CH. Distinguishing truncated and normal MUC1 glycoform targeting from Tn-MUC1-specific CAR T cells: specificity is the key to safety. Immunity. 2016;45(5):947–8. https://doi.org/10.1016/j.immuni.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  49. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, et al. Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 2016;44(6):1444–54. https://doi.org/10.1016/j.immuni.2016.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5. https://doi.org/10.1038/nbt.2459.

    Article  CAS  PubMed  Google Scholar 

  51. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70. https://doi.org/10.1007/s10875-012-9689-9.

    Article  CAS  PubMed  Google Scholar 

  52. Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21(14):3149–59. https://doi.org/10.1158/1078-0432.CCR-14-1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6. https://doi.org/10.1038/mt.2010.272.

    Article  CAS  PubMed  Google Scholar 

  54. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72. https://doi.org/10.1158/1078-0432.CCR-15-0428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kulu Y, Dorfman JD, Kuruppu D, Fuchs BC, Goodwin JM, Fujii T, et al. Comparison of intravenous versus intraperitoneal administration of oncolytic herpes simplex virus 1 for peritoneal carcinomatosis in mice. Cancer Gene Ther. 2009;16(4):291–7. https://doi.org/10.1038/cgt.2008.83.

    Article  CAS  PubMed  Google Scholar 

  57. Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, Blumgart LH, et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J. 1999;13(11):1325–34.

    Article  CAS  PubMed  Google Scholar 

  58. Carew JF, Kooby DA, Halterman MW, Federoff HJ, Fong Y. Selective infection and cytolysis of human head and neck squamous cell carcinoma with sparing of normal mucosa by a cytotoxic herpes simplex virus type 1 (G207). Hum Gene Ther. 1999;10(10):1599–606. https://doi.org/10.1089/10430349950017608.

    Article  CAS  PubMed  Google Scholar 

  59. Adusumilli PS, Stiles BM, Chan MK, Mullerad M, Eisenberg DP, Ben-Porat L, et al. Imaging and therapy of malignant pleural mesothelioma using replication-competent herpes simplex viruses. J Gene Med. 2006;8(5):603–15. https://doi.org/10.1002/jgm.877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebright MI, Zager JS, Malhotra S, Delman KA, Weigel TL, Rusch VW, et al. Replication-competent herpes virus NV1020 as direct treatment of pleural cancer in a rat model. J Thorac Cardiovasc Surg. 2002;124(1):123–9.

    Article  PubMed  Google Scholar 

  61. Liu Z, Ravindranathan R, Kalinski P, Guo ZS, Bartlett DL. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754. https://doi.org/10.1038/ncomms14754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512–6. https://doi.org/10.1038/nature24462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–20. https://doi.org/10.1038/nature24473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6(226):226ra32. https://doi.org/10.1126/scitranslmed.3008095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303. https://doi.org/10.1038/sj.gt.3301885.

    Article  CAS  PubMed  Google Scholar 

  66. Siebeneicher S, Reuter S, Krause M, Wangorsch A, Maxeiner J, Wolfheimer S, et al. Epicutaneous immune modulation with Bet v 1 plus R848 suppresses allergic asthma in a murine model. Allergy. 2014;69(3):328–37. https://doi.org/10.1111/all.12326.

    Article  CAS  PubMed  Google Scholar 

  67. Diana A, Wang LM, D’Costa Z, Allen P, Azad A, Silva MA, et al. Prognostic value, localization and correlation of PD-1/PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7(27):40992–1004. https://doi.org/10.18632/oncotarget.10038.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. https://doi.org/10.1158/1078-0432.CCR-13-3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zamarin D, Wolchok JD. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. Mol Ther Oncolytics. 2014;1:14004. https://doi.org/10.1038/mto.2014.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kleinpeter P, Fend L, Thioudellet C, Geist M, Sfrontato N, Koerper V, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death −1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology. 2016;5(10):e1220467. https://doi.org/10.1080/2162402x.2016.1220467.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ilett E, Kottke T, Thompson J, Rajani K, Zaidi S, Evgin L, et al. Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy. Gene Ther. 2017;24(1):21–30. https://doi.org/10.1038/gt.2016.70.

    Article  CAS  PubMed  Google Scholar 

  72. Zamarin D, Holmgaard RB, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340. https://doi.org/10.1038/ncomms14340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ, et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res. 2002;8(1):275–80.

    CAS  PubMed  Google Scholar 

  74. Uchida H, Hamada H, Nakano K, Kwon H, Tahara H, Cohen JB, et al. Oncolytic herpes simplex virus vectors fully retargeted to tumor- associated antigens. Curr Cancer Drug Targets. 2018;18(2):162–70. https://doi.org/10.2174/1568009617666170206105855.

    Article  CAS  PubMed  Google Scholar 

  75. Deng L, Fan J, Ding Y, Zhang J, Zhou B, Zhang Y, et al. Oncolytic efficacy of thymidine kinase-deleted vaccinia virus strain Guang9. Oncotarget. 2017;8(25):40533–43. https://doi.org/10.18632/oncotarget.17125.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cassady KA, Gross M, Gillespie GY, Roizman B. Second-site mutation outside of the U(S)10–12 domain of Deltagamma(1)34.5 herpes simplex virus 1 recombinant blocks the shutoff of protein synthesis induced by activated protein kinase R and partially restores neurovirulence. J Virol. 2002;76(3):942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Savontaus MJ, Sauter BV, Huang TG, Woo SL. Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther. 2002;9(14):972–9. https://doi.org/10.1038/sj.gt.3301747.

    Article  CAS  PubMed  Google Scholar 

  78. Potts KG, Hitt MM, Moore RB. Oncolytic viruses in the treatment of bladder cancer. Adv Urol. 2012;2012:404581. https://doi.org/10.1155/2012/404581.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chung RY, Saeki Y, Chiocca EA. B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol. 1999;73(9):7556–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tahtinen S, Blattner C, Vaha-Koskela M, Saha D, Siurala M, Parviainen S, et al. T-cell therapy enabling adenoviruses coding for IL2 and TNFalpha induce systemic immunomodulation in mice with spontaneous melanoma. J Immunother. 2016;39(9):343–54. https://doi.org/10.1097/CJI.0000000000000144.

    Article  CAS  PubMed  Google Scholar 

  81. Passer BJ, Cheema T, Wu S, Wu CL, Rabkin SD, Martuza RL. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 2013;20(1):17–24. https://doi.org/10.1038/cgt.2012.75.

    Article  CAS  PubMed  Google Scholar 

  82. DiPaola RS, Plante M, Kaufman H, Petrylak DP, Israeli R, Lattime E, et al. A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7–1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J Transl Med. 2006;4:1. https://doi.org/10.1186/1479-5876-4-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi JW, Lee YS, Yun CO, Kim SW. Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release. 2015;219:181–91. https://doi.org/10.1016/j.jconrel.2015.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tyminski E, Leroy S, Terada K, Finkelstein DM, Hyatt JL, Danks MK, et al. Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res. 2005;65(15):6850–7. https://doi.org/10.1158/0008-5472.CAN-05-0154.

    Article  CAS  PubMed  Google Scholar 

  85. Currier MA, Gillespie RA, Sawtell NM, Mahller YY, Stroup G, Collins MH, et al. Efficacy and safety of the oncolytic herpes simplex virus rRp450 alone and combined with cyclophosphamide. Mol Ther. 2008;16(5):879–85. https://doi.org/10.1038/mt.2008.49.

    Article  CAS  PubMed  Google Scholar 

  86. Wang J, Lu XX, Chen DZ, Li SF, Zhang LS. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer. World J Gastroenterol. 2004;10(3):400–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Andtbacka RH, Ross M, Puzanov I, Milhem M, Collichio F, Delman KA, et al. Patterns of clinical response with Talimogene Laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol. 2016;23(13):4169–77. https://doi.org/10.1245/s10434-016-5286-0.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2018;36(17):1658–67. https://doi.org/10.1200/jco.2017.73.7379.

    Article  CAS  PubMed  Google Scholar 

  89. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(22):2619–26. https://doi.org/10.1200/jco.2016.67.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47. https://doi.org/10.1158/1078-0432.ccr-06-0759.

    Article  CAS  PubMed  Google Scholar 

  91. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62. https://doi.org/10.1038/nrd4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harrington KJ, Puzanov I, Hecht JR, Hodi FS, Szabo Z, Murugappan S, et al. Clinical development of talimogene laherparepvec (T-VEC): a modified herpes simplex virus type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther. 2015;15(12):1389–403. https://doi.org/10.1586/14737140.2015.1115725.

    Article  CAS  PubMed  Google Scholar 

  93. Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2017:Jco2017737379. https://doi.org/10.1200/jco.2017.73.7379.

    Article  CAS  PubMed  Google Scholar 

  94. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19.e10. https://doi.org/10.1016/j.cell.2017.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sengupta S, Thaci B, Crawford AC, Sampath P. Interleukin-13 receptor alpha 2-targeted glioblastoma immunotherapy. Biomed Res Int. 2014;2014:952128. https://doi.org/10.1155/2014/952128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ, et al. Safety and efficacy of Intratumoral injections of Chimeric Antigen Receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res. 2017;5(12):1152–61. https://doi.org/10.1158/2326-6066.cir-17-0189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L, et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther. 2006;17(12):1214–24. https://doi.org/10.1089/hum.2006.17.1214.

    Article  CAS  PubMed  Google Scholar 

  98. Buller RE, Runnebaum IB, Karlan BY, Horowitz JA, Shahin M, Buekers T, et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther. 2002;9(7):553–66. https://doi.org/10.1038/sj.cgt.7700472.

    Article  CAS  PubMed  Google Scholar 

  99. Buller RE, Shahin MS, Horowitz JA, Runnebaum IB, Mahavni V, Petrauskas S, et al. Long term follow-up of patients with recurrent ovarian cancer after Ad p53 gene replacement with SCH 58500. Cancer Gene Ther. 2002;9(7):567–72. https://doi.org/10.1038/sj.cgt.7700473.

    Article  CAS  PubMed  Google Scholar 

  100. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70(3):875–82. https://doi.org/10.1158/0008-5472.can-09-2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sterman DH, Haas A, Moon E, Recio A, Schwed D, Vachani A, et al. A trial of intrapleural adenoviral-mediated interferon-alpha2b gene transfer for malignant pleural mesothelioma. Am J Respir Crit Care Med. 2011;184(12):1395–9. https://doi.org/10.1164/rccm.201103-0554CR.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sterman DH, Alley E, Stevenson JP, Friedberg J, Metzger S, Recio A, et al. Pilot and feasibility trial evaluating immuno-gene therapy of malignant mesothelioma using intrapleural delivery of adenovirus-IFNalpha combined with chemotherapy. Clin Cancer Res. 2016;22(15):3791–800. https://doi.org/10.1158/1078-0432.ccr-15-2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol. 2009;27(34):5763–71. https://doi.org/10.1200/jco.2009.24.3675.

    Article  CAS  PubMed  Google Scholar 

  104. Andtbacka RHI, Collichio FA, Amatruda T, Senzer NN, Chesney J, Delman KA, et al. OPTiM: a randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J Clin Oncol. 2013;31(18 suppl):LBA9008-LBA. https://doi.org/10.1200/jco.2013.31.18_suppl.lba9008.

    Article  Google Scholar 

  105. Long GV, Dummer R, Ribas A, Puzanov I, VanderWalde A, Andtbacka RHI, et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(15_suppl):9568. https://doi.org/10.1200/JCO.2016.34.15_suppl.9568.

    Article  Google Scholar 

  106. Breitbach CJ, Arulanandam R, De Silva N, Thorne SH, Patt R, Daneshmand M, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73(4):1265–75. https://doi.org/10.1158/0008-5472.can-12-2687.

    Article  CAS  PubMed  Google Scholar 

  107. Andtbacka RHI, Curti BD, Kaufman H, Daniels GA, Nemunaitis JJ, Spitler LE, et al. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol. 2015;33(15_suppl):9030. https://doi.org/10.1200/jco.2015.33.15_suppl.9030.

    Article  Google Scholar 

  108. Andtbacka RHI, Ross MI, Agarwala SS, Taylor MH, Vetto JT, Neves RI, et al. Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB-IV unresectable or metastatic melanoma. Journal of Clinical Oncology. 2017;35(15_suppl):9510. https://doi.org/10.1200/JCO.2017.35.15_suppl.9510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad S. Adusumilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cherkassky, L., Grosser, R., Adusumilli, P.S. (2020). Regional Gene Therapy for Cancer. In: Fong, Y., Gamblin, T., Han, E., Lee, B., Zager, J. (eds) Cancer Regional Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-28891-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28891-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28890-7

  • Online ISBN: 978-3-030-28891-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics