Skip to main content

Topical Anti-inflammatory Agents in Wound Care

  • Chapter
  • First Online:
Local Wound Care for Dermatologists

Part of the book series: Updates in Clinical Dermatology ((UCD))

Abstract

The inflammatory phase is a crucial step in wound healing. Recently there was more attention to this aspect in terms of diagnostic procedures and therapeutic strategies.

The goal of caregiver should be to better understand when there is a necessity to provide the wound bed and surrounding skin with an anti-inflammatory therapy. The role of exudate on this matter is fundamental and more and more information have been provided to characterize the various cytokines in the exudate. In the last few years, there was an increasing interest about correcting-rebalancing the inflammation in various types of chronic wounds. The treatment ideally should bypass the systemic side effects of immunosuppressive agents considering the patient general status, which is most of the time affected by several other comorbidities. Topical agents with anti-inflammatory action have shown potential positive effects on chronic wounds. The range of topical agents in use at this time will range from matrix metalloproteinases inhibitors, anti-TNF alpha drugs, and nonsteroidal anti-inflammatory agents. Careful evaluation of wound bed and sometimes pathological assessment with a biopsy are mandatory before starting treatment. Level of pain will benefit also from those treatments according to the relation between pain and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199:17–24.

    Article  CAS  PubMed  Google Scholar 

  2. Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93(6):875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodeling. J Pathol. 2013;229(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  4. Serra MB, Barroso WA, da Silva NN, Silva SDN, Borges ACR, Abreu IC, Borges MODR. From inflammation to current and alternative therapies involved in wound healing. Int J Inflam. 2017;2017:3406215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nussbaum C, Bannenberg S, Keul P, Gräler MH, Gonçalves-de-Albuquerque CF, Korhonen H, von Wnuck LK, Heusch G, de Castro Faria Neto HC, Rohwedder I, Göthert JR, Prasad VP, Haufe G, Lange-Sperandio B, Offermanns S, Sperandio M, Levkau B. Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nat Commun. 2015;6:6416.

    Article  CAS  PubMed  Google Scholar 

  6. De Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol. 2016;16(6):378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature Rev Immunol. 2011;11(11):723–37.

    Article  CAS  Google Scholar 

  8. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nature Rev Immunol. 2013;13(3):159–175, 2013

    Article  CAS  Google Scholar 

  9. Butin-Israeli V, Bui TM, Wiesolek HL, Mascarenhas L, Lee JJ, Mehl LC, Knutson KR, Adam SA, Goldman RD, Beyder A, Wiesmuller L, Hanauer SB, Sumagin R. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Invest. 2019; https://doi.org/10.1172/JCI122085. [Epub ahead of print]. pii: 122085.

  10. Lassig AAD, Lindgren BR, Itabiyi R, Joseph AM, Gupta K. Excessive inflammation portends complications: wound cytokines and head and neck surgery outcomes. Laryngoscope. 2019; https://doi.org/10.1002/lary.27796. [Epub ahead of print].

  11. Charles CA, Romanelli P, Martinez ZB, Ma F, Roberts B, Kirsner RS. Tumor necrosis factor-alfa in nonhealing venous leg ulcers. J Am Acad Dermatol. 2009;60(6):951–5.

    Article  PubMed  Google Scholar 

  12. Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Song XY, Wahl SM. Tumor necrosis factor-alpha (TNF-α) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 2012;20(1):38–49.

    Article  PubMed  Google Scholar 

  13. Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J. 2002;16(9):963–74.

    Article  CAS  PubMed  Google Scholar 

  14. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I, Chimenti S, Krueger JG. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677–87.

    Article  CAS  PubMed  Google Scholar 

  15. Streit M, Beleznay Z, Braathen LR. Topical application of the tumour necrosis factor-alpha antibody infliximab improves healing of chronic wounds. Int Wound J. 2006;3:171–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fox JD, Baquerizo-Nole KL, Keegan BR, Macquhae F, Escandon J, Espinosa A, Perez C, Romanelli P, Kirsner RS. Adalimumab treatment leads to reduction of tissue tumor necrosis factor-alpha correlated with venous leg ulcer improvement: a pilot study. Int Wound J. 2016;13(5):963–6.

    Article  PubMed  Google Scholar 

  17. Cornelissen AM, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM. Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res. 2000;79(10):1782–8.

    Article  CAS  PubMed  Google Scholar 

  18. Laato M, Heino J, Gerdin B, Kähäri VM, Niinikoski J. Interferon-gamma-induced inhibition of wound healing in vivo and in vitro. Ann Chir Gynaecol. 2001;90(215):19–23.

    PubMed  Google Scholar 

  19. Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N. The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol. 2004;172(3):1848–55.

    Article  CAS  PubMed  Google Scholar 

  20. Thomay AA, Daley JM, Sabo E, Worth PJ, Shelton LJ, Harty MW, Reichner JS, Albina JE. Disruption of interleukin-1 signaling improves the quality of wound healing. Am J Pathol. 2009;174(6):2129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodero MP, Hodgson SS, Hollier B, Combadiere C, Khosrotehrani K. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J Invest Dermatol. 2013;133(3):783–92.

    Article  CAS  PubMed  Google Scholar 

  22. Curd LM, Favors SE, Gregg RK. Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol. 2012;168(2):192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avitabile S, Odorisio T, Madonna S, Eyerich S, Guerra L, Eyerich K, Zambruno G, Cavani A, Cianfarani F. Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. J Invest Dermatol. 2015;135(11):2862–70.

    Article  CAS  PubMed  Google Scholar 

  24. McGee HM, Schmidt BA, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA, Horsley V. IL-22 promotes fibroblast-mediated wound repair in the skin. J Invest Dermatol. 2013;133(5):1321–9.

    Article  CAS  PubMed  Google Scholar 

  25. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174(6):3695–702.

    Article  CAS  PubMed  Google Scholar 

  26. Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol. 2014;14(12):783–95.

    Article  CAS  PubMed  Google Scholar 

  27. Poindexter NJ, Williams RR, Powis G, Jen E, Caudle AS, Chada S, Grimm EA. IL-24 is expressed during wound repair and inhibits TGFalpha-induced migration and proliferation of keratinocytes. Exp Dermatol. 2010;19(8):714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, Kasman I, Winer J, Modrusan Z, Danilenko DM, Ouyang W. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. 2007;178(4):2229–40.

    Article  CAS  PubMed  Google Scholar 

  29. Sun DP, Yeh CH, So E, Wang LY, Wei TS, Chang MS, Hsing CH. Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine. 2013;62(3):360–8.

    Article  CAS  PubMed  Google Scholar 

  30. Soo C, Shaw WW, Freymiller E, Longaker MT, Bertolami CN, Chiu R, Tieu A, Ting K. Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. J Cell Biochem. 1999;74(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Liang P. Interleukin-24 and its receptors. Immunology. 2005;114(2):166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gabunia K, Autieri MV. Interleukin-19 can enhance angiogenesis by Macrophage Polarization. Macrophage (Houst). 2015;2(1):e562.

    Google Scholar 

  33. Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, Mason T, O'Kane S, Ferguson M. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen. 2013;21(3):428–36.

    Article  PubMed  Google Scholar 

  34. Kieran I, Taylor C, Bush J, Rance M, So K, Boanas A, Metcalfe A, Hobson R, Goldspink N, Hutchison J, Ferguson M. Effects of interleukin-10 on cutaneous wounds and scars in humans of African continental ancestral origin. Wound Repair Regen. 2014;22(3):326–33.

    Article  PubMed  Google Scholar 

  35. Yang B, Suwanpradid J, Sanchez-Lagunes R, Choi HW, Hoang P, Wang D, Abraham SN, MacLeod AS. IL-27 facilitates skin wound healing through induction of epidermal proliferation and host defense. J Invest Dermatol. 2017;137(5):1166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hofman D, Moore K, Cooper R, Eagle M, Cooper S. Use of topical corticosteroids on chronic leg ulcers. J Wound Care. 2007;16(5):227–30.

    Article  CAS  PubMed  Google Scholar 

  37. Murphy S. Use of topical corticosteroids in the management of static wounds. Nurs Standard. 2009;23:53–4.

    Article  Google Scholar 

  38. Sommer S, Highet AS. Treatment of venous leg ulcers with clobetasol propionate ointment. J Dermatol Treat. 2000;11:53–5.

    Article  CAS  Google Scholar 

  39. De Panfilis G, Ghidini A, Graifemberghi S, et al. Dexamethasone-induced healing of chronic leg ulcers in a patient with defective organisation of the extracellular matrix of fibronectin. Br J Dermatol. 2000;142:166–70.

    Article  PubMed  Google Scholar 

  40. Paquette D, Badiavas E, Falanga V. Short-contact topical tretinoin therapy to stimulate granulation tissue in chronic wounds. J Am Acad Derm. 2001;45:382–6.

    Article  CAS  PubMed  Google Scholar 

  41. Tom WL, Peng DH, Allaei A, Hsu D, Hata TR. The effect of short-contact topical tretinoin therapy for foot ulcers in patients with diabetes. Arch Dermatol. 2005;141(11):1373–7.

    Article  CAS  PubMed  Google Scholar 

  42. Cullen B, Smith R, McCulloch E, Silcock D, Morrison L. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen. 2002;10(1):16–25.

    Article  PubMed  Google Scholar 

  43. Veves A, Sheehan P, Pham HT. A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg. 2002;137(7):822–7.

    Article  CAS  PubMed  Google Scholar 

  44. Vin F, Teot L, Meaume S. The healing properties of Promogran in venous leg ulcers. J Wound Care. 2002;11(9):335–41.

    Article  CAS  PubMed  Google Scholar 

  45. Nisi G, Brandi C, Grimaldi L, Calabrò M, D'Aniello C. Use of a protease-modulating matrix in the treatment of pressure sores. Chir Ital. 2005;57(4):465–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiricozzi, A., Romanelli, M. (2020). Topical Anti-inflammatory Agents in Wound Care. In: Alavi, A., Maibach, H. (eds) Local Wound Care for Dermatologists. Updates in Clinical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28872-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28872-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28871-6

  • Online ISBN: 978-3-030-28872-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics