Skip to main content

Critical Congenital Heart Disease

  • Chapter
  • First Online:
Emerging Topics and Controversies in Neonatology
  • 754 Accesses

Abstract

In the current era the management of neonates with critical congenital heart disease, whilst no longer a new phenomenon, continues to be challenging and controversial. This chapter discusses a number of key areas, including the use of genomics to further investigate genetic disorders in infants with congenital heart disease, changes in the area of antenatal diagnosis and the potentially promising area of fetal intervention. We explore options for ‘in-utero’ stabilisation and new therapies such as maternal hyperoxgenation to treat the fetus.

Cardiac surgery is complex and the decision making surrounding the timing and type of surgery is explored, using examples of Tetralogy of Fallot and Hypoplastic Left Heart Syndrome (HLHS). The latest outcome data for neonatal cardiac surgery are discussed as well as important areas around surgical performance and benchmarking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmunds L, Fishman N, Gregory G, Heymann M, Hoffman J, Robinson S, Roe B, Rudolph A, Stanger P. Cardiac surgery in infants less than six weeks of age. Circulation. 1972;XLVI:250–6.

    Article  Google Scholar 

  2. https://www.leicesterhospitalscharity.org.uk/baby-vanellope-hope. Accessed 21 June 2019.

  3. Türkyilmaz G, Avcı S, Sıvrıkoz T, Erturk E, Altunoglu U, Turkyilmazlmaz SE, Kalelioglu IH, Has R, Yuksel A. Prenatal diagnosis and management of ectopia cordis: varied presentation spectrum. Fetal Pediatr Pathol. 2019;38(2):127–37.

    Article  PubMed  Google Scholar 

  4. McCrindle B, Tchervenkov C, Konstantinov I, Williams W, Neirotti R, Jacobs M, Blackstone E, Congenital Heart Surgeons Society. Risk factors associated with mortality and interventions in 472 neonates with interrupted aortic arch: a Congenital Heart Surgeons Society study. J Thorac Cardiovasc Surg. 2005;129(2):343–50.

    Article  PubMed  Google Scholar 

  5. Murphy MO, Bellsham-Revell H, Morgan GJ, Krasemann T, Rosenthal E, Qureshi SA, Salih C, Austin CB, Anderson DR. Hybrid procedure for neonates with hypoplastic left heart syndrome at high-risk for Norwood: midterm outcomes. Ann Thorac Surg. 2015;100(6):2286–92.

    Article  PubMed  Google Scholar 

  6. Pizarro C, Davies RR, Woodford E, Radtke WA. Improving early outcomes following hybrid procedure for patients with single ventricle and systemic outflow obstruction: defining risk factors. Eur J Cardiothorac Surg. 2014;47(6):995–1001.

    Article  PubMed  Google Scholar 

  7. Gaynor JW, Stopp C, Wypij D, Andropoulos DB, Atallah J, Atz AM, Beca J, Donofrio MT, Duncan K, Ghanayem NS, Goldberg CS. International Cardiac Collaborative on Neurodevelopment (ICCON) Investigators. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015;135(5):816–25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gaynor JW, Stopp C, Wypij D, Andropoulos DB, Atallah J, Atz AM, Beca J, Donofrio MT, Duncan K, Ghanayem NS, Goldberg CS. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015;135(5):816.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hacıhamdioğlu B, Hacıhamdioğlu D, Delil K. 22q11 deletion syndrome: current perspective. Appl Clin Genet. 2015;8:123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Russell MW, Chung WK, Kaltman JR, Miller TA. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J Am Heart Assoc. 2018;7(6):e006906.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blue GM, Kirk EP, Giannoulatou E, Sholler GF, Dunwoodie SL, Harvey RP, Winlaw DS. Advances in the genetics of congenital heart disease: a clinician’s guide. J Am Coll Cardiol. 2017;69(7):859–70.

    Article  CAS  PubMed  Google Scholar 

  12. Morris JK, Springett AL, Greenlees R, Loane M, Addor MC, Arriola L, Barisic I, Bergman JE, Csaky-Szunyogh M, Dias C, Draper ES. Trends in congenital anomalies in Europe from 1980 to 2012. PLoS One. 2018;13(4):e0194986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lynch TA, Abel DE. Teratogens and congenital heart disease. J Diagn Med Sonogr. 2015;31(5):301–5.

    Article  Google Scholar 

  14. Carey AS, Liang L, Edwards J, Brandt T, Mei H, Sharp AJ, Hsu DT, Newburger JW, Ohye RG, Chung WK, Russell MW. Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet. 2013;6(5):444–51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luna-Zurita L, Stirnimann CU, Glatt S, Kaynak BL, Thomas S, Baudin F, Samee MAH, He D, Small EM, Mileikovsky M, Nagy A. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell. 2016;164(5):999–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wright CF, McRae JF, Clayton S, Gallone G, Aitken S, FitzGerald TW, Jones P, Prigmore E, Rajan D, Lord J, Sifrim A. Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet Med. 2018;20(10):1216.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Landis BJ, Levey A, Levasseur SM, Glickstein JS, Kleinman CS, Simpson LL, Williams IA. Prenatal diagnosis of congenital heart disease and birth outcomes. Pediatr Cardiol. 2013;34(3):597–605.

    Article  PubMed  Google Scholar 

  19. Carvalho JS. Antenatal diagnosis of critical congenital heart disease. Optimal place of delivery is where appropriate care can be delivered. Arch Dis Child. 2016;101(6):505–7.

    Article  PubMed  Google Scholar 

  20. Paladini D, Alfirevic Z, Carvalho JS, Khalil A, Malinger G, Martinez JM, Rychik J, Ville Y, Gardiner H, ISUOG Clinical Standards Committee. ISUOG consensus statement on current understanding of the association of neurodevelopmental delay and congenital heart disease: impact on prenatal counseling. Ultrasound Obstet Gynecol. 2017;49(2):287–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chu PY, Li JS, Kosinski AS, Hornik CP, Hill KD. Congenital heart disease in premature infants 25-32 weeks’ gestational age. J Pediatr. 2017;181:37–41.

    Article  PubMed  Google Scholar 

  22. Cheng HH, Almodovar MC, Laussen PC, Wypij D, Polito A, Brown DW, Emani SM, Pigula FA, Allan CK, Costello JM. Outcomes and risk factors for mortality in premature neonates with critical congenital heart disease. Pediatr Cardiol. 2011;32(8):1139–46.

    Article  PubMed  Google Scholar 

  23. Licht DJ, Shera DM, Clancy RR, Wernovsky G, Montenegro LM, Nicolson SC, Zimmerman RA, Spray TL, Gaynor JW, Vossough A. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137(3):529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barry OM, Friedman KG, Bergersen L, Emani S, Moeyersoms A, Tworetzky W, Marshall AC, Lock JE. Clinical and hemodynamic results after conversion from single to biventricular circulation after fetal aortic stenosis intervention. Am J Cardiol. 2018;122(3):511–6.

    Article  PubMed  Google Scholar 

  25. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, Cuneo BF, Huhta JC, Jonas RA, Krishnan A, Lacey S. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183–242.

    Article  PubMed  Google Scholar 

  26. Jantzen DW, Moon-Grady AJ, Morris SA, Armstrong AK, Berg C, Dangel J, Fifer CG, Frommelt M, Gembruch U, Herberg U, Jaeggi E. Hypoplastic left heart syndrome with intact or restrictive atrial septum: a report from the International Fetal Cardiac Intervention Registry. Circulation. 2017;136(14):1346–9.

    Article  PubMed  Google Scholar 

  27. Schidlow DN, Tworetzky W, Wilkins-Haug LE. Percutaneous fetal cardiac interventions for structural heart disease. Am J Perinatol. 2014;31(07):629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Co-Vu J, Lopez-Colon D, Vyas HV, Weiner N, DeGroff C. Maternal hyperoxygenation: a potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography. 2017;34(12):1822–33.

    Article  PubMed  Google Scholar 

  29. Costello JM, Pasquali SK, Jacobs JP, He X, Hill KD, Cooper DS, Backer CL, Jacobs ML. Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Circulation. 2014;129(24):2511–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kalfa D, Krishnamurthy G, Duchon J, Najjar M, Levasseur S, Chai P, Chen J, Quaegebeur J, Bacha E. Outcomes of cardiac surgery in patients weighing<2.5 kg: affect of patient-dependent and-independent variables. J Thorac Cardiovasc Surg. 2014;148(6):2499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marwali E, Heineking B, Haas N. Pre and postoperative management of pediatric patients with congenital heart diseases. Paediatric and neonatal surgery. Edited by Joanne Baerg; Published by InTech open, DOI 10.5772/63041 Published 2017.

    Google Scholar 

  32. Schiller O, Sinha P, Zurakowski D, Jonas RA. Reconstruction of right ventricular outflow tract in neonates and infants using valved cryopreserved femoral vein homografts. J Thorac Cardiovasc Surg. 2014;147(3):874–9.

    Article  PubMed  Google Scholar 

  33. Van Puyvelde J, Meyns B, Rega F. Pulmonary atresia and a ventricular septal defect: about size and strategy. Eur J Cardiothorac Surg. 2016;49(5):1419–20.

    Article  PubMed  Google Scholar 

  34. Gerelli S, van Steenberghe M, Murtuza B, Bojan M, Harding ED, Bonnet D, Vouhé PR, Raisky O. Neonatal right ventricle to pulmonary connection as a palliative procedure for pulmonary atresia with ventricular septal defect or severe tetralogy of Fallot. Eur J Cardiothorac Surg. 2013;45(2):278–88.

    Article  PubMed  Google Scholar 

  35. Bentham JR, Zava NK, Harrison WJ, Shauq A, Kalantre A, Derrick G, Chen RH, Dhillon R, Taliotis D, Kang SL, Crossland D. Duct stenting versus modified Blalock-Taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a multicenter national study. Circulation. 2018;137(6):581–8.

    Article  PubMed  Google Scholar 

  36. Thomas VT. Partners of the heart: Vivien Thomas and his work with Alfred Blalock: an autobiography. Philadelphia: University of Pennsylvania Press; 1998.

    Google Scholar 

  37. Ohye RG, Schranz D, D’udekem Y. Current therapy for hypoplastic left heart syndrome and related single ventricle lesions. Circulation. 2016;134(17):1265–79.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yabrodi M, Mastropietro CW. Hypoplastic left heart syndrome: from comfort care to long-term survival. Pediatr Res. 2017;81(1–2):142.

    Article  PubMed  Google Scholar 

  39. Kenny LA, DeRita F, Nassar M, Dark J, Coats L, Hasan A. Transplantation in the single ventricle population. Ann Cardiothorac Surg. 2018;7(1):152.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilson WM, Valente AM, Hickey EJ, Clift P, Burchill L, Emmanuel Y, Gibson P, Greutmann M, Grewal J, Grigg LE, Gurvitz M. Outcomes of patients with hypoplastic left heart syndrome reaching adulthood after Fontan palliation: multicenter study. Circulation. 2018;137(9):978–81.

    Article  PubMed  Google Scholar 

  41. Norwood WI, Lang P, Casteneda AR, Campbell DN. Experience with operations for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 1981;82(4):511–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kishimoto H, Kawahira Y, Kawata H, Miura T, Iwai S, Mori T. The modified Norwood palliation on a beating heart. J Thorac Cardiovasc Surg. 1999;118(6):1130–2.

    Article  CAS  PubMed  Google Scholar 

  43. Reemtsen BL, Pike NA, Starnes VA. Stage I palliation for hypoplastic left heart syndrome: Norwood versus Sano modification. Curr Opin Cardiol. 2007;22(2):60–5.

    Article  PubMed  Google Scholar 

  44. https://www.nicor.org.uk/wp-content/uploads/2018/11/National-Congenital-Heart-Disease-Audit-Summary-Report-2014-17.pdf. Accessed 21 June 2019.

  45. Rehman SM, Ravaglioli A, Singappuli K, Roman K, Gnanapragasam J, Samarasinghe D, Viola N. Hybrid strategies for high-risk non-hypoplastic left heart syndrome patients. J Card Surg. 2018;33(7):399–401.

    Article  PubMed  Google Scholar 

  46. Coe JY, Olley PM. A novel method to maintain ductus arteriosus patency. J Am Coll Cardiol. 1991;18(3):837–41.

    Article  CAS  PubMed  Google Scholar 

  47. Gibbs JL, Wren C, Watterson KG, Hunter S, Hamilton JR. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: a new approach to palliation for the hypoplastic left heart syndrome. Heart. 1993;69(6):551–5.

    Article  CAS  Google Scholar 

  48. Cao JY, Lee SY, Phan K, Ayer J, Celermajer DS, Winlaw DS. Early outcomes of hypoplastic left heart syndrome infants: meta-analysis of studies comparing the hybrid and Norwood procedures. World J Pediatr Congen Heart Surg. 2018;9(2):224–33.

    Article  Google Scholar 

  49. Yerebakan C, Valeske K, Elmontaser H, Yörüker U, Mueller M, Thul J, Mann V, Latus H, Villanueva A, Hofmann K, Schranz D. Hybrid therapy for hypoplastic left heart syndrome: myth, alternative, or standard? J Thorac Cardiovasc Surg. 2016;151(4):1112–23.

    Article  PubMed  Google Scholar 

  50. Franklin RC, Jacobs JP, Krogmann ON, Béland MJ, Aiello VD, Colan SD, Elliott MJ, Gaynor JW, Kurosawa H, Maruszewski B, Stellin G. Nomenclature for congenital and paediatric cardiac disease: historical perspectives and The International Pediatric and Congenital Cardiac Code. Cardiol Young. 2008;18(S2):70–80.

    Article  PubMed  Google Scholar 

  51. Jenkins KJ, Gauvreau K. Center-specific differences in mortality: preliminary analyses using the Risk Adjustment in Congenital Heart Surgery (RACHS-1) method. J Thorac Cardiovasc Surg. 2002;124(1):97–104.

    Article  PubMed  Google Scholar 

  52. Lloyd DF, Cutler L, Tibby SM, Vimalesvaran S, Qureshi SA, Rosenthal E, Anderson D, Austin C, Bellsham-Revell H, Krasemann T. Analysis of preoperative condition and interstage mortality in Norwood and hybrid procedures for hypoplastic left heart syndrome using the Aristotle scoring system. Heart. 2014;100(10):775–80.

    Article  PubMed  Google Scholar 

  53. Rogers L, Pagel C, Sullivan ID, Mustafa M, Tsang V, Utley M, Bull C, Franklin RC, Brown KL. Interventional treatments and risk factors in patients born with hypoplastic left heart syndrome in England and Wales from 2000 to 2015. Heart. 2018;104(18):1500–7.

    Article  PubMed  Google Scholar 

  54. Pagel C, Rogers L, Brown K, Ambler G, Anderson D, Barron D, Blackshaw E, Crowe S, English K, Franklin R, Jesper E. Improving risk adjustment in the PRAiS (Partial Risk Adjustment in Surgery) model for mortality after paediatric cardiac surgery and improving public understanding of its use in monitoring outcomes. Health Serv Delivery Res. 2017;5(23):1–164.

    Article  Google Scholar 

  55. https://www.ucl.ac.uk/clinical-operational-research-unit/AnalysisTools/PRAiS. Accessed 21 June 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Linter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linter, K., Mukasa, T. (2020). Critical Congenital Heart Disease. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics