Skip to main content

Glucocorticoid Treatment for Bronchopulmonary Dysplasia

  • Chapter
  • First Online:
Emerging Topics and Controversies in Neonatology
  • 742 Accesses

Abstract

Although there is supporting evidence that glucocorticoids improve the short-term pulmonary outcome of newborns, studies indicate significant long-term side effects with neurological sequelae. Corticosteroids can be administered by any route and the licensed products differ significantly in their pharmacological properties and (side) effects. Treatment schedules and dosing regimens vary significantly. Consequently, studies are difficult to compare and to summarise. However, to date, there is no dosing strategy which can always considered to be safe. This provides a dilemma for the treating clinician, who has to balance possible benefits against probable harms in individual patients. This book chapter will first highlight the general mechanism of action of corticosteroids both as natural hormones and as newly synthetised drugs. We will then focus on the function of corticoids during inflammation and their special role in lung development. We will present the clinical data and summarise the current evidence for glucocorticoid treatment strategies ranging from intravenous application to inhalation. Key aspects are the different treatment strategies with dexamethasone and hydrocortisone, because these are the most heavily used substances in newborns. We will take into account different modes of administration, different substances and dosing schedules before ending with some conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotropic hormone

aOR:

Adjusted odds ratio

BPD:

Bronchopulmonary dysplasia

BSID:

Bayley Scales of Infant Development

CI:

Confidence interval

CP:

Cerebral palsy

HPA:

Hypothalamic-pituitary-adrenal

NNT:

Number needed to treat

PMA:

Postmenstrual age

RCT:

Randomised controlled trial

RD:

Risk difference

ROP:

Retinopathy of prematurity

RR:

Risk reduction

References

  1. Kendall EC. Some observations on the hormone of the adrenal cortex designated compound E. Proc Staff Meet Mayo Clin. 1949;24(11):298–301.

    CAS  PubMed  Google Scholar 

  2. Gitau R, et al. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J Clin Endocrinol Metab. 2001;86(1):104–9.

    CAS  PubMed  Google Scholar 

  3. Nahoul K, et al. Plasma corticosteroid patterns in the fetus. J Steroid Biochem. 1988;29(6):635–40.

    Article  CAS  PubMed  Google Scholar 

  4. Beitins IZ, et al. The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr Res. 1973;7(5):509–19.

    Article  CAS  PubMed  Google Scholar 

  5. Stirrat LI, et al. Transfer and metabolism of cortisol by the isolated perfused human placenta. J Clin Endocrinol Metab. 2018;103(2):640–8.

    Article  PubMed  Google Scholar 

  6. Liu D, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50(4):515–25.

    CAS  PubMed  Google Scholar 

  8. Liggins GC. Adrenocortical-related maturational events in the fetus. Am J Obstet Gynecol. 1976;126(7):931–41.

    Article  CAS  PubMed  Google Scholar 

  9. Rimsza ME. Complications of corticosteroid therapy. Am J Dis Child. 1978;132(8):806–10.

    CAS  PubMed  Google Scholar 

  10. Lecocq FR, Mebane D, Madison LL. The acute effect of hydrocortisone on hepatic glucose output and peripheral glucose utilization. J Clin Invest. 1964;43:237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaplan SA, Shimizu CS. Effects of cortisol on amino acids in skeletal muscle and plasma. Endocrinology. 1963;72:267–72.

    Article  CAS  PubMed  Google Scholar 

  12. van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest. 2009;39(2):81–93.

    Article  PubMed  CAS  Google Scholar 

  13. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mulrow PJ, Forman BH. The tissue effects of mineralocorticoids. Am J Med. 1972;53(5):561–72.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang G, Zhang L, Duff GW. A negative regulatory region containing a glucocorticosteroid response element (nGRE) in the human interleukin-1beta gene. DNA Cell Biol. 1997;16(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  16. Almawi WY, et al. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol. 1996;60(5):563–72.

    Article  CAS  PubMed  Google Scholar 

  17. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.

    Article  CAS  PubMed  Google Scholar 

  18. Auphan N, et al. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270(5234):286–90.

    Article  CAS  PubMed  Google Scholar 

  19. O’Malley BW. Mechanisms of action of steroid hormones. N Engl J Med. 1971;284(7):370–7.

    Article  PubMed  Google Scholar 

  20. Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  21. Lewis GP, Piper PJ. Inhibition of release of prostaglandins as an explanation of some of the actions of anti-inflammatory corticosteroids. Nature. 1975;254(5498):308–11.

    Article  CAS  PubMed  Google Scholar 

  22. Che W, et al. Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1. Am J Respir Cell Mol Biol. 2014;50(2):358–68.

    PubMed  Google Scholar 

  23. Marik PE, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008;36(6):1937–49.

    Article  CAS  PubMed  Google Scholar 

  24. Shoenfeld Y, et al. Prednisone-induced leukocytosis. Influence of dosage, method and duration of administration on the degree of leukocytosis. Am J Med. 1981;71(5):773–8.

    Article  CAS  PubMed  Google Scholar 

  25. Calhoun DA, Kirk JF, Christensen RD. Incidence, significance, and kinetic mechanism responsible for leukemoid reactions in patients in the neonatal intensive care unit: a prospective evaluation. J Pediatr. 1996;129(3):403–9.

    Article  CAS  PubMed  Google Scholar 

  26. Juul SE, Haynes JW, McPherson RJ. Evaluation of neutropenia and neutrophilia in hospitalized preterm infants. J Perinatol. 2004;24(3):150–7.

    Article  PubMed  Google Scholar 

  27. Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett. 2001;487(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  28. Ghanta S, Leeman KT, Christou H. An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol. 2013;37(2):115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vyas J, Kotecha S. Effects of antenatal and postnatal corticosteroids on the preterm lung. Arch Dis Child Fetal Neonatal Ed. 1997;77(2):F147–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doyle LW, et al. Late (>7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;10:CD001145.

    PubMed  Google Scholar 

  31. Doyle LW, et al. Early (<8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;10:CD001146.

    PubMed  Google Scholar 

  32. Massaro D, et al. Postnatal development of alveoli. Regulation and evidence for a critical period in rats. J Clin Invest. 1985;76(4):1297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith LJ, et al. Post-natal corticosteroids are associated with reduced expiratory flows in children born very preterm. J Paediatr Child Health. 2011;47(7):448–54.

    Article  PubMed  Google Scholar 

  34. Mammel MC, et al. Controlled trial of dexamethasone therapy in infants with bronchopulmonary dysplasia. Lancet. 1983;1(8338):1356–8.

    Article  CAS  PubMed  Google Scholar 

  35. Stewart PM, Mason JI. Cortisol to cortisone: glucocorticoid to mineralocorticoid. Steroids. 1995;60(1):143–6.

    Article  CAS  PubMed  Google Scholar 

  36. Meikle AW, Tyler FH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med. 1977;63(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  37. Munoz-Durango N, et al. Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone. Biomed Res Int. 2015;2015:652738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clore J, Schoolwerth A, Watlington CO. When is cortisol a mineralocorticoid? Kidney Int. 1992;42(6):1297–308.

    Article  CAS  PubMed  Google Scholar 

  39. Sandberg AA, Slaunwhite WR Jr, Antoniades HN. The binding of steroids and steroid conjugates to human plasma proteins. Recent Prog Horm Res. 1957;13:209–60; discussion 260–7

    CAS  PubMed  Google Scholar 

  40. Linder BL, et al. Cortisol production rate in childhood and adolescence. J Pediatr. 1990;117(6):892–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kenny FM, Malvaux P, Migeon CJ. Cortisol production rate in newborn babies, older infants, and children. Pediatrics. 1963;31:360–73.

    CAS  PubMed  Google Scholar 

  42. Lightman SL, et al. The significance of glucocorticoid pulsatility. Eur J Pharmacol. 2008;583(2–3):255–62.

    Article  CAS  PubMed  Google Scholar 

  43. Jett PL, et al. Variability of plasma cortisol levels in extremely low birth weight infants. J Clin Endocrinol Metab. 1997;82(9):2921–5.

    CAS  PubMed  Google Scholar 

  44. Cvijanovich NZ, et al. Glucocorticoid receptor polymorphisms and outcomes in pediatric septic shock. Pediatr Crit Care Med. 2017;18(4):299–303.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Putignano P, et al. The effects of anti-convulsant drugs on adrenal function. Horm Metab Res. 1998;30(6–7):389–97.

    Article  CAS  PubMed  Google Scholar 

  46. McAllister WA, et al. Rifampicin reduces effectiveness and bioavailability of prednisolone. Br Med J (Clin Res Ed). 1983;286(6369):923–5.

    Article  CAS  Google Scholar 

  47. Roberts D, et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454.

    PubMed  Google Scholar 

  48. Mahesh VB, Ulrich F. Metabolism of cortisol and cortisone by various tissues and subcellular particles. J Biol Chem. 1960;235:356–60.

    CAS  PubMed  Google Scholar 

  49. Shackleton CH. Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J Steroid Biochem Mol Biol. 1993;45(1–3):127–40.

    Article  CAS  PubMed  Google Scholar 

  50. Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002;109(2):330–8.

    Article  Google Scholar 

  51. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Paediatr Child Health. 2002;7(1):20–46.

    Google Scholar 

  52. Sweet DG, et al. European consensus guidelines on the management of respiratory distress syndrome—2016 update. Neonatology. 2017;111(2):107–25.

    Article  CAS  PubMed  Google Scholar 

  53. Walsh MC, et al. Changes in the use of postnatal steroids for bronchopulmonary dysplasia in 3 large neonatal networks. Pediatrics. 2006;118(5):e1328–35.

    Article  PubMed  Google Scholar 

  54. Soll RF, et al. Obstetric and neonatal care practices for infants 501 to 1500 g from 2000 to 2009. Pediatrics. 2013;132(2):222–8.

    Article  PubMed  Google Scholar 

  55. Virkud YV, et al. Respiratory support for very low birth weight infants receiving dexamethasone. J Pediatr. 2017;183:26–30.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Charles B, et al. Pharmacokinetics of dexamethasone following single-dose intravenous administration to extremely low birth weight infants. Dev Pharmacol Ther. 1993;20(3–4):205–10.

    Article  CAS  PubMed  Google Scholar 

  57. Cotterrell M, Balazs R, Johnson AL. Effects of corticosteroids on the biochemical maturation of rat brain: postnatal cell formation. J Neurochem. 1972;19(9):2151–67.

    Article  CAS  PubMed  Google Scholar 

  58. Huang CC, et al. Effects of neonatal corticosteroid treatment on hippocampal synaptic function. Pediatr Res. 2007;62(3):267–70.

    Article  CAS  PubMed  Google Scholar 

  59. Romagnoli C, et al. Effect on growth of two different dexamethasone courses for preterm infants at risk of chronic lung disease. A randomized trial. Pharmacology. 1999;59(5):266–74.

    Article  CAS  PubMed  Google Scholar 

  60. Stark AR, et al. Adverse effects of early dexamethasone treatment in extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med. 2001;344(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  61. Shinwell ES, et al. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonatal Ed. 2000;83(3):F177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Higgins S, Friedlich P, Seri I. Hydrocortisone for hypotension and vasopressor dependence in preterm neonates: a meta-analysis. J Perinatol. 2010;30(6):373–8.

    Article  CAS  PubMed  Google Scholar 

  63. Cranny RL, Kirschvink JF, Kelley VC. The half-life of hydrocortisone in normal newborn infants. AMA J Dis Child. 1960;99:437–43.

    Article  CAS  PubMed  Google Scholar 

  64. Baden M, et al. A controlled trial of hydrocortisone therapy in infants with respiratory distress syndrome. Pediatrics. 1972;50(4):526–34.

    CAS  PubMed  Google Scholar 

  65. Bonsante F, et al. Early low-dose hydrocortisone in very preterm infants: a randomized, placebo-controlled trial. Neonatology. 2007;91(4):217–21.

    Article  CAS  PubMed  Google Scholar 

  66. Watterberg KL, et al. Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial. Pediatrics. 2004;114(6):1649–57.

    Article  PubMed  Google Scholar 

  67. Baud O, et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 2016;387(10030):1827–36.

    Article  CAS  PubMed  Google Scholar 

  68. Wang H, Rosner GL, Goodman SN. Quantifying over-estimation in early stopped clinical trials and the “freezing effect” on subsequent research. Clin Trials. 2016;13(6):621–31.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baud O, et al. Association between early low-dose hydrocortisone therapy in extremely preterm neonates and neurodevelopmental outcomes at 2 years of age. JAMA. 2017;317(13):1329–37.

    Article  CAS  PubMed  Google Scholar 

  70. Kothadia JM, et al. Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants. Pediatrics. 1999;104(1 Pt 1):22–7.

    Article  CAS  PubMed  Google Scholar 

  71. Sweet DG, et al. European consensus guidelines on the management of respiratory distress syndrome—2019 update. Neonatology. 2019;115(4):432–50.

    Article  PubMed  Google Scholar 

  72. Onland W, et al. Systemic hydrocortisone to prevent bronchopulmonary dysplasia in preterm infants (the SToP-BPD study): statistical analysis plan. Trials. 2018;19(1):178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Onland W, et al. Systemic hydrocortisone to prevent bronchopulmonary dysplasia in preterm infants (the SToP-BPD study); a multicenter randomized placebo controlled trial. BMC Pediatr. 2011;11:102.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shinwell ES, et al. Inhaled corticosteroids for bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2016;138(6).

    Article  PubMed  Google Scholar 

  75. Bassler D. Inhalation or instillation of steroids for the prevention of bronchopulmonary dysplasia. Neonatology. 2015;107(4):358–9.

    Article  CAS  PubMed  Google Scholar 

  76. Bassler D, et al. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N Engl J Med. 2015;373(16):1497–506.

    Article  CAS  PubMed  Google Scholar 

  77. Koch A, et al. Inhaled glucocorticoids and pneumonia in preterm infants: post hoc results from the NEuroSIS trial. Neonatology. 2017;112(2):110–3.

    Article  CAS  PubMed  Google Scholar 

  78. Bassler D, et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia. N Engl J Med. 2018;378(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  79. Nimmo AJ, et al. Intratracheal administration of glucocorticoids using surfactant as a vehicle. Clin Exp Pharmacol Physiol. 2002;29(8):661–5.

    Article  CAS  PubMed  Google Scholar 

  80. Wiedmann TS, Bhatia R, Wattenberg LW. Drug solubilization in lung surfactant. J Control Release. 2000;65(1–2):43–7.

    Article  CAS  PubMed  Google Scholar 

  81. Yeh TF, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics. 2008;121(5):e1310–8.

    Article  PubMed  Google Scholar 

  82. Yeh TF, et al. Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2016;193(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  83. Venkataraman R, et al. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants: a systematic review and meta-analysis. Pediatr Pulmonol. 2017;52(7):968–75.

    Article  PubMed  Google Scholar 

  84. Onland W, et al. Systemic corticosteroid regimens for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;1:CD010941.

    PubMed  Google Scholar 

  85. Doyle LW, et al. Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics. 2005;115(3):655–61.

    Article  PubMed  Google Scholar 

  86. Doyle LW, et al. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014;165(6):1258–60.

    Article  CAS  PubMed  Google Scholar 

  87. Laughon MM, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183(12):1715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Doyle LW, Cheong JLY. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia—who might benefit? Semin Fetal Neonatal Med. 2017;22(5):290–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Bassler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Restin, T., Bassler, D. (2020). Glucocorticoid Treatment for Bronchopulmonary Dysplasia. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics