Advertisement

Gastric Bypass pp 395-402 | Cite as

Shifts in the Intestinal Microbiota After Gastric Bypass

  • Meera Nair
  • Carel W. le Roux
  • Neil G. DochertyEmail author
Chapter

Abstract

Gastric bypass surgery is the most efficacious intervention for the treatment of morbid obesity and type 2 diabetes. Multiple and multilayered mechanisms have been proposed for the therapeutic effects of the procedure. Given that the microbiota has been implicated in the pathogenesis of obesity and diabetes, an emphasis has been placed on addressing whether alterations to the gut microbiota may contribute to the effector functions of gastric bypass.

A number of studies have characterised unique phylogenetic changes in the structure of the gut microbiota after gastric bypass highlighting phylum-level differences. These appear more likely to depend upon gastrointestinal reconfiguration rather than changes in diet and body weight. Functional annotation of metagenomic changes indicates that the reformulated microbiota may significantly alter host metabolism and result in reduced energy harvest from the diet.

Future efforts to define the core alterations in the microbiome that confer metabolic benefit may be of value in efforts to develop non-surgical bariatric mimetic approaches to the treatment of obesity and diabetes.

Keywords

Diabetes Obesity Gastric bypass Microbiota Pyrosequencing Metagenomics 

References

  1. 1.
    Organisation WH. Global health obervatory data-overweight and obesity. 2014. Available from: http://www.who.int/gho/ncd/risk_factors/overweight_text/en/.
  2. 2.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  3. 3.
    Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279–88.CrossRefGoogle Scholar
  4. 4.
    Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17(6):883–94.CrossRefGoogle Scholar
  5. 5.
    Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5(9):759–70.CrossRefGoogle Scholar
  6. 6.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.CrossRefGoogle Scholar
  7. 7.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science (New York, NY). 2005;308(5728):1635–8.CrossRefGoogle Scholar
  8. 8.
    Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr (Oslo, Norway: 1992). 2009;98(2):229–38.CrossRefGoogle Scholar
  9. 9.
    Harmsen HJ, de Goffau MC. The human gut microbiota. Adv Exp Med Biol. 2016;902:95–108.CrossRefGoogle Scholar
  10. 10.
    Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol. 2015;17(11):1561–9.CrossRefGoogle Scholar
  11. 11.
    Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.CrossRefGoogle Scholar
  12. 12.
    Helander HF, Fandriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–9.CrossRefGoogle Scholar
  13. 13.
    Caricilli AM, Castoldi A, Camara NO. Intestinal barrier: a gentlemen’s agreement between microbiota and immunity. World J Gastrointest Pathophysiol. 2014;5(1):18–32.CrossRefGoogle Scholar
  14. 14.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.CrossRefGoogle Scholar
  15. 15.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.CrossRefGoogle Scholar
  16. 16.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefGoogle Scholar
  17. 17.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.CrossRefGoogle Scholar
  18. 18.
    Hersoug LG, Moller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17(4):297–312.CrossRefGoogle Scholar
  19. 19.
    Vors C, Pineau G, Drai J, Meugnier E, Pesenti S, Laville M, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab. 2015;100(9):3427–35.CrossRefGoogle Scholar
  20. 20.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.CrossRefGoogle Scholar
  21. 21.
    Remely M, Aumueller E, Jahn D, Hippe B, Brath H, Haslberger AG. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benefic Microbes. 2014;5(1):33–43.CrossRefGoogle Scholar
  22. 22.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.CrossRefGoogle Scholar
  23. 23.
    Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.CrossRefGoogle Scholar
  24. 24.
    Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.CrossRefGoogle Scholar
  25. 25.
    Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.CrossRefGoogle Scholar
  26. 26.
    Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.CrossRefGoogle Scholar
  27. 27.
    Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.CrossRefGoogle Scholar
  28. 28.
    Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Meera Nair
    • 1
  • Carel W. le Roux
    • 1
  • Neil G. Docherty
    • 1
    Email author
  1. 1.Diabetes Complications Research Centre, Conway Institute, School of MedicineUniversity College DublinDublinIreland

Personalised recommendations