Skip to main content

Shock Overview

  • Chapter
  • First Online:
Emergency Department Critical Care

Abstract

Shock is a clinical syndrome characterized by inadequate tissue perfusion of oxygen and other nutrients, resulting in cellular injury and oxygen debt. Lactic acidosis is the result of this process. Hypotension is common, but not always present in patients with shock. If not interrupted, the cascade of cell death, end-organ damage, and multisystem organ dysfunction can cause significant morbidity and death. Clinicians should focus on early recognition of shock and proceed expeditiously with both resuscitation and identification of the etiology of shock. Four categories of shock (hypovolemic, cardiogenic, obstructive, and distributive) and their etiologies and features are described. Fluid resuscitation, optimization of mean arterial pressure (MAP), attention to adequate oxygenation, and treatment of the underlying cause of shock should be early priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weil MH, Maafifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation. 1970;41:989–1001.

    CAS  PubMed  Google Scholar 

  2. Puskarich MA, Trzeciak S, Shapiro NI, Heffner AC, Kline JA, Jones AE, Emergency Medicine Shock Research Network (EMSHOCKNET). Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock. Resuscitation. 2011;82:1289–93.

    PubMed  PubMed Central  Google Scholar 

  3. Vorwerk C, Florence L, Gray L, Goss C, Fudge T, Coats TJ. Hypotension on arrival in the emergency department: a predictor of in-hospital mortality. Ann Emerg Med. 2008;51:476.

    Google Scholar 

  4. Cohn JN. Blood pressure measurement in shock. JAMA. 1967;199:118–22.

    CAS  PubMed  Google Scholar 

  5. Low RB, Martin D. Accuracy of blood pressure measurements made aboard helicopters. Ann Emerg Med. 1988;17:604–12.

    CAS  PubMed  Google Scholar 

  6. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Broder G, Weil MG. Excess Lactate: an index of reversibility of shock in human patients. Science. 1964;43:1457. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure. Circulation. 1970;61:989–1002.

    Google Scholar 

  8. Nichol AD, Egi M, Pettila V, Bellomo R, French C, Hart G, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010;14:R25.

    PubMed  PubMed Central  Google Scholar 

  9. Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, et al. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med. 2005;45:524–8.

    PubMed  Google Scholar 

  10. Abou-Khalil B, Scalea TM, Trooskin SZ, Henry SM, Hitchcock R. Hemodynamic responses to shock in young trauma patients: need for invasive monitoring. Crit Care Med. 1994;22:633–9.

    CAS  PubMed  Google Scholar 

  11. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    CAS  PubMed  Google Scholar 

  12. Donnino MW, Nguyen B, Jacobsen G, Tomlanovich M, Rivers E. Cryptic septic shock: a sub-analysis of early, goal-directed therapy. Chest. 2003;124(4_MeetingAbstracts):90S.

    Google Scholar 

  13. Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the surviving sepsis campaign database∗. Crit Care Med. 2015;43(3):567–73.

    CAS  PubMed  Google Scholar 

  14. Younger JG, Falk JL, Rothrock SG. Relationship between arterial and peripheral venous lactate levels. Acad Emerg Med. 1996;3:730–4.

    CAS  PubMed  Google Scholar 

  15. Falk JL, Rackow EC, Levy JL, Astiz ME, Weil MH. Delayed lactate clearance in patients with circulatory shock. Acute Care. 1985;16:212–5.

    Google Scholar 

  16. Nguyen HB, Rivers EP, Knoblich BP. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637–42.

    PubMed  Google Scholar 

  17. Fiddian-Green RG. Should measurements of tissue pH and Po2 be included in the routine monitoring of intensive are unit patients? Crit Care Med. 1991;19:141–3.

    CAS  PubMed  Google Scholar 

  18. Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest. 1989;95(6):1216–21.

    CAS  PubMed  Google Scholar 

  19. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA, Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Katz SH, Falk JL. Misplaced endotracheal tubes by paramedics in an urban EMS system. Ann Emerg Med. 2001;37:32–7.

    CAS  PubMed  Google Scholar 

  21. Silvestri S, Ralls GA, Krauss B, Thundiyil J, Rothrock SG, Senn A, et al. The effectiveness of out-of-hospital use of continuous ETCO2 monitoring on the rate of unrecognized misplaced intubation within a regional EMS system. Ann Emerg Med. 2005;45:497–503.

    PubMed  Google Scholar 

  22. Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607–11.

    CAS  PubMed  Google Scholar 

  23. Fearon DM, Steele DW. End-tidal carbon dioxide predicts the presence and severity of acidosis in children with diabetes. Acad Emerg Med. 2002;9:1373–8.

    PubMed  Google Scholar 

  24. Hunter CL, Silvestri S, Dean M, Falk JL, Papa L. ETCO2 is associated with mortality and lactate in patients with suspected sepsis. Am J Emerg Med. 2013;31:64–71.

    PubMed  Google Scholar 

  25. Demetriades D, Chan LS, Bhasin P, Berne TV, Ramicone E, Huicochea F, et al. Relative bradycardia in patients with traumatic hypotension. J Trauma. 1998;45:534–9.

    CAS  PubMed  Google Scholar 

  26. Bickell WH, Wall MJ, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    CAS  PubMed  Google Scholar 

  27. Villanueva C, Colomo A, Bosch A, ConcepciÛn M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21.

    CAS  PubMed  Google Scholar 

  28. Shaftan GW, Chiu C-J, Grosz CS, Dennis C. The effect of transfusion and of certain hemodynamic factors on the spontaneous control of arterial hemorrhage. J Cardiovasc Surg (Torino). 1964;5:251–6.

    CAS  Google Scholar 

  29. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52(6):1141–6.

    PubMed  Google Scholar 

  30. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63.

    PubMed  Google Scholar 

  31. Cohen BJ, Jordan MH, Chapin SD, Cape B, Laureno R. Pontine myelinolysis after correction of hyponatremia during burn resuscitation. J Burn Care Rehabil. 1991;12:153–6.

    CAS  PubMed  Google Scholar 

  32. Weingart S. Pulmonary embolism treatment options and the PEAC Team with Oren Freidman. EMCrit.org [Internet]. New York: EMCrit. 2014 July 14 [cited 2015 Mar 11]. Available from: http://emcrit.org/podcasts/pulmonary-embolism-treatment-team/.

  33. Ohman EM, Califf RM, Topol EJ, Candela R, Abbottsmith C, Ellis S, et al. Consequences of reocclusion after successful reperfusion therapy in acute myocardial infarction. TAMI Study Group. Circulation. 1990;82:781–91.

    CAS  PubMed  Google Scholar 

  34. GISSI (Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto miocardico). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet. 1986;i:397–401.

    Google Scholar 

  35. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med. 1993;329:1615–22. [Erratum, N Engl J Med 1994;330:516].

    Google Scholar 

  36. Le May MR, So DY, Dionne R, Glover CA, Froeschl MP, Wells GA, et al. A citywide protocol for primary PCI in ST-segment elevation myocardial infarction. N Engl J Med. 2008;358:231–40.

    PubMed  Google Scholar 

  37. Figueras J, Weil MH. Hypovolemia and hypotension complicating management of acute cardiogenic pulmonary edema. Am J Cardiol. 1979;44(7):1349–55.

    CAS  PubMed  Google Scholar 

  38. Adler C, Reuter H, Seck C, Hellmich M, Zobel C. Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest. Resuscitation. 2013;84(2):194–9.

    PubMed  Google Scholar 

  39. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341(9):625–34.

    CAS  PubMed  Google Scholar 

  40. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    CAS  PubMed  Google Scholar 

  41. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;(2):CD000567.

    Google Scholar 

  42. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561.

    PubMed  PubMed Central  Google Scholar 

  43. Annane D, Siami S, Jaber S, Martin C, Elatrous S, DeclËre AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.

    CAS  PubMed  Google Scholar 

  44. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    CAS  PubMed  Google Scholar 

  45. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.

    PubMed  Google Scholar 

  46. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.

    PubMed  Google Scholar 

  47. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7.

    PubMed  Google Scholar 

  48. Johansson PI, Oliveri RS, Ostrowski SR. Hemostatic resuscitation with plasma and platelets in trauma. J Emerg Trauma Shock. 2012;5(2):120–5.

    PubMed  PubMed Central  Google Scholar 

  49. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248(3):447–58.

    PubMed  Google Scholar 

  50. HÈbert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.

    PubMed  Google Scholar 

  51. Hollenberg SM. Vasoactive drugs in circulatory shock. Am J Respir Crit Care Med. 2011;183(7):847–55. Kellum JA, Pinsky MR. Use of vasopressor agents in critically ill patients. Curr Opin Crit Care. 2002;8(3):236–41.

    Google Scholar 

  52. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–43.

    CAS  PubMed  Google Scholar 

  53. Weingart S. EMCrit.org [Internet]. New York: EMCrit. 2009 July 10 [cited 2015 Mar 22]. Available from: http://emcrit.org/podcasts/bolus-dose-pressors/.

  54. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    PubMed  Google Scholar 

  55. De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis∗. Crit Care Med. 2012;40(3):725–30.

    PubMed  Google Scholar 

  56. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    CAS  PubMed  Google Scholar 

  57. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.

    CAS  PubMed  Google Scholar 

  58. Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566–76.

    PubMed  Google Scholar 

  59. Petrucci N, De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;(2):CD003844.

    Google Scholar 

  60. Falk JL, Rackow EC, Astiz M, Weil MH. Fluid resuscitation in shock. J Cardiothorac Anesth. 1988;2(6):33–8. https://doi.org/10.1016/s0888-6296(88)80006-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baker, S.Y., Tarkowski, A.F., Falk, J.L. (2020). Shock Overview. In: Shiber, J., Weingart, S. (eds) Emergency Department Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-28794-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28794-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28792-4

  • Online ISBN: 978-3-030-28794-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics