Skip to main content

A Targeted Data Extraction System for Mobile Devices

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 569)

Abstract

Smartphones contain large amounts of data that are of significant interest in forensic investigations. In many situations, a smartphone owner may be willing to provide a forensic investigator with access to data under a documented consent agreement. However, for privacy or personal reasons, not all the smartphone data may be extracted for analysis. Courts have also opined that only data relevant to the investigation at hand may be extracted.

This chapter describes the design and implementation of a targeted data extraction system for mobile devices. It assumes user consent and implements state-of-the-art filtering using machine learning techniques. The system can be used to identify and extract selected data from smartphones in real time at crime scenes. Experiments conducted with iOS and Android devices demonstrate the utility of the targeted data extraction system.

Keywords

  • Mobile devices
  • privacy
  • targeted data extraction
  • iOS
  • Android

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-28752-8_5
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-28752-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Hardcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and X. Zheng, Tensorflow: A system for large-scale machine learning, Proceedings of the Twelfth USENIX Symposium on Operating Systems Design and Implementation, pp. 265–283, 2016

    Google Scholar 

  2. N. Al Mutawa, I. Baggili and A. Marrington, Forensic analysis of social networking applications on mobile devices, Digital Investigation, vol. 9(S), pp. S24–S33, 2012

    Google Scholar 

  3. A. Aminnezhad, A. Dehghantanha and M. Abdullah, A survey of privacy issues in digital forensics, International Journal of Cyber-Security and Digital Forensics, vol. 1(4), pp. 311–323, 2012

    Google Scholar 

  4. C. Anglano, Forensic analysis of WhatsApp Messenger on Android smartphones, Digital Investigation, vol. 11(3), pp. 201–213, 2014

    Google Scholar 

  5. Apple, Core ML, Cupertino, California (developer.apple.com/documentation/coreml), 2017

  6. Apple, iOS Security, iOS 12.3, Cupertino, California (www.apple.com/business/docs/iOS_Security_Guide.pdf), 2019

  7. AutoHotkey Foundation, AutoHotkey (autohotkey.com), 2019

  8. J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron and Y. Bengio, Theano: Deep learning on GPUs with Python, Proceedings of the BigLearning Workshop, vol. 3, 2011

    Google Scholar 

  9. G. Cantrell, D. Dampier, Y. Dandass, N. Niu and C. Bogen, Research toward a partially-automated and crime-specific digital triage process model, Computer and Information Science, vol. 5(2), pp. 29–38, 2012

    Google Scholar 

  10. K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv:1406.1078 (arxiv.org/abs/1406.1078), 2014

  11. D. Crockford, The application/json Media Type for JavaScript Object Notation (JSON), RFC 4627, 2006

    Google Scholar 

  12. Google, Android Developer Manual, Mountain View, California, 2017

    Google Scholar 

  13. A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv:1704.04861 (arxiv.org/abs/1704.04861), 2017

  14. M. Husain, I. Baggili and R. Sridhar, A simple cost-effective framework for iPhone forensic analysis, Proceedings of the International Conference on Digital Forensics and Cyber Crime, pp. 27–37, 2010

    Google Scholar 

  15. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell, Caffe: Convolutional architecture for fast feature embedding, Proceedings of the Twenty-Second ACM International Conference on Multimedia, pp. 675–678, 2014

    Google Scholar 

  16. Keras Team, Keras: Deep Learning for Humans, GitHub (github.com/keras-team/keras), 2019

  17. S. Khan, A. Gani, A. Abdul Wahab, M. Shiraz and I. Ahmad, Network forensics: Review, taxonomy and open challenges, Journal of Network and Computer Applications, pp. 214-235, 2016

    Google Scholar 

  18. A. Krizhevsky, I. Sutskever and G. Hinton, ImageNet classification with deep convolutional neural networks, in Communications of the ACM, vol. 60(6), pp. 84–90, 2017

    Google Scholar 

  19. D. Lawton, R. Stacey and G. Dodd, E-Discovery in Digital Forensic Investigations, CAST Publication Number 32/14, Centre for Applied Science and Technology, Home Office, London, United Kingdom, 2014

    Google Scholar 

  20. Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, vol. 521(7553), pp. 436–444, 2015

    Google Scholar 

  21. libimobile.org, libimobiledevice: A cross-platform software protocol library and tools to communicate with iOS devices natively (www.libimobiledevice.org), 2019

  22. J. Mahadeokar, Open NSFW Model, GitHub (http://www.github.com/yahoo/open_nsfw), 2017

  23. S. Morrissey and T. Campbell, iOS Forensic Analysis: For iPhone, iPad and iPod touch, Apress, New York, 2010

    Google Scholar 

  24. K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge Massachusetts, 2012

    Google Scholar 

  25. D. Quick and M. Alzaabi, Forensic analysis of the Android filesystem YAFFS2, Proceedings of the Ninth Australian Digital Forensics Conference, pp. 100–109, 2011

    Google Scholar 

  26. V. Roussev, A. Barreto and I. Ahmed, Forensic Acquisition of Cloud Drives, arXiv:1603.06542 (arxiv.org/abs/1603.06542), 2016

  27. V. Roussev, C. Quates and R. Martell, Real-time digital forensics and triage, Digital Investigation, vol. 10(2), pp. 158–167, 2013

    Google Scholar 

  28. N. Scrivens and X. Lin, Android digital forensics: Data, extraction and analysis, Proceedings of the ACM Turing 50th Celebration Conference – China, article no. 26, 2017

    Google Scholar 

  29. A. Shekhar, Android TensorFlow Machine Learning Example, MindOrks Blog (blog.mindorks.com/android-tensorflow-machine-learning-example-ff0e9b2654cc) March 6, 2017

  30. Y. Steinbuch and J. Tacopino, Woman records horrific scene after boyfriend is fatally shot by police, New York Post, July 7, 2016

    Google Scholar 

  31. P. Stirparo and I. Kounelis, The Mobileak Project: Forensic methodology for mobile application privacy assessment, Proceedings of the International Conference on Internet Technology and Secured Transactions, pp. 297–303, 2012

    Google Scholar 

  32. M. Stroud, In Boston bombing, flood of digital evidence is a blessing and a curse, CNN, April 18, 2013

    Google Scholar 

  33. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, Rethinking the inception architecture for computer vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826, 2016

    Google Scholar 

  34. Team Cydia, Cydia Impactor (cydia-app.com/cydia-impactor), 2019

  35. TensorFlow, Introduction to TensorFlow Lite (www.tensorflow.org/mobile/lite, 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, S. et al. (2019). A Targeted Data Extraction System for Mobile Devices. In: Peterson, G., Shenoi, S. (eds) Advances in Digital Forensics XV. DigitalForensics 2019. IFIP Advances in Information and Communication Technology, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-030-28752-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28752-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28751-1

  • Online ISBN: 978-3-030-28752-8

  • eBook Packages: Computer ScienceComputer Science (R0)