Skip to main content

Fermented Vegetables as Vectors for Relocation of Microbial Diversity from the Environment to the Human Gut

  • Chapter
  • First Online:
How Fermented Foods Feed a Healthy Gut Microbiota

Abstract

The discovery of yeasts as living cells able to produce ethanol in fermented foods and beverages in the 1920s continues to captivate our imagination with respect to the functionality and role of microbes in food preservation and human health. Mounting evidence confirms the ability of microbes to deliver nutrition, flavor and many bio-functionalities to fermented foods and the gastrointestinal (GI) tract of mammals. The microbial diversity found in fermented foods, particulalrly vegetables, can benefit the human GI tract microbiome. Critical functions for microbes associated with fresh vegetables include the contribution to growth, development and defense of host plants. In parallel, plants have evolved to select and maintain beneficial microbes, including those within their tissue. Fermentation then serves as an instrument to pre-adapt beneficial microbes indigenous to fresh vegetables to the acidic pH and high lactic acid concentration characteristic of the colon and to the metabolism of dietary fiber, particularly pectic substances naturally present in the plant material and the gut. Fermented vegetable products enjoy a long-lasting record of safety upon consumption and are an appropriate vector for the translocation of microbial diversity from plants to the gut. Fermented vegetables can enhance prebiotic fiber and beneficial microbes content and consequently augment the catalog of metabolic functions needed in and available to the gut for building resilience in a healthy individual. It is the indigenous microbiota of fermented vegetables and intrinsic chemical composition of substrates, particularly dietary fibers, which can enable beneficial health claims from the consumption of pickles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, R. E., Daeschel, M. A., & Ericksson, C. E. (1988). Controlled lactic acid fermentation of vegetables. In G. Durand, L. Babichon, & J. Florent (Eds.), Proceedings of the 8th International Symposium (pp. 855–868). Paris, France: Societé Fraçaise de Microbiologie.

    Google Scholar 

  • Arroyo-López, F. N., Querol, A., Bautista-Gallego, J., & Garrido-Fernández, A. (2008). Role of yeasts in table olive production. International Journal of Food Microbiology, 128, 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Balatsouras, G. (1985). Taxonomic and physiological characteristics of the facultative rod type lactic acid bacteria isolated from fermenting green and black olives. Grasas y Aceites, 36, 239–249.

    Google Scholar 

  • Barko, P. C., McMichael, M. A., Swanson, K. S., & Williams, D. A. (2018). The gastrointestinal microbiome: A review. Journal of Veterinary Internal Medicine, 32, 9–25.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou, R., Yoon, S. S., Breidt, F., Fleming, H. P., & Klaenhammer, T. R. (2002). Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Applied and Environmental Microbiology, 68, 5452–5458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, T. A., & Etchells, J. L. (1961). Influence of salt (NaCl) on pectinolytic softening of cucumbers. Journal of Food Science, 26, 84–90.

    Article  Google Scholar 

  • Bell, T. A., Etchells, J. L., & Jones, I. D. (1950). Softening of commercial cucumber salt-stock in relation to polygalacturonase activity. Food Technology, 4, 157–163.

    CAS  Google Scholar 

  • Beuchat, L. R., Brackett, R. E., Hao, D. Y., & Conner, D. E. (1986). Growth and thermal inactivation of Listeria monocytogenes in cabbage and cabbage juice. Canadian Journal of Microbiology, 32, 791–795.

    Article  CAS  PubMed  Google Scholar 

  • Bleve, G., Tufariello, M., Durante, M., Grieco, F., Ramires, F. A., Mita, G., Tasioula-Margari, M., & Logrieco, A. F. (2015). Physico-chemical characterization of natural fermententation process of Conservolea and Kalamata table olives and development of a protocol for the preselection of fermentation starters. Food Microbiology, 46, 368–382.

    Article  CAS  PubMed  Google Scholar 

  • Borg, A. F., Etchells, J. L., Bell, T. A. (1972). Microbial examination of solar, rock, and granulated salts and the effect of these salts on the growth of certain species of lactic acid bacteria. Pickle Pak Sci 2(1), 11–17.

    Google Scholar 

  • Botta, C., & Cocolin, L. (2012). Microbial dynamics and biodiversity in table olive fermentation: Culture-dependent and independent approaches. Frontiers in Microbiology, 3, 245. https://doi.org/10.3389/fmicb.2012.00245.

  • Breidt, F., & Caldwell, J. M. (2011). Survival of Escherichia coli O157:H7 in cucumber fermentation brines. Journal of Food Science, 76(3), M198–M203.

    Article  CAS  PubMed  Google Scholar 

  • Breidt, F., Kay, K., Cook, J., Osborne, J., Ingham, B., & Arritt, F. (2013a). Determination of 5-log reduction times for Escherichia coli O157:H7, Salmonella enterica, or Listeria monocytogenes in acidified foods with pH 3.5 or 3.8. Journal of Food Protection, 76(7), 1245–1249.

    Article  CAS  PubMed  Google Scholar 

  • Breidt, F., Medina-Pradas, E., Wafa, D., Pérez-Díaz, I. M., Franco, W., Huang, H., Johanningsmeier, S. D., & Kim, J. (2013b). Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning. Journal of Food Science, 78(3), M470–M476.

    Article  CAS  PubMed  Google Scholar 

  • Brock, T. D. (1961). Milestones in microbiology. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Buckenhüskes, H., Jensen, H. A., Anderson, R., Garrido Fernández, A., & Rodrigo, M. (1990). Fermented vegetables. In P. Zeuthen, J. C. Cheftel, C. Eriksson, T. R. Gormley, P. Linko, & K. Paulus (Eds.), Processing and quality of foods. Food biotechnology: Avenue to healthy and nutritious products (Vol. 2, pp. 2162–2188). London: Elsevier Appl. Science.

    Google Scholar 

  • Caggia, C., Randazzo, C. L., Di Salvo, M., Romeo, F., & Giudici, P. (2004). Occurrence of Listeria monocytogenes in green table olives. Journal of Food Protection, 67, 2189–2194.

    Article  PubMed  Google Scholar 

  • Cauley, S. M. 2016. Survival of commercially available lyophiized Lactobacillus plantarum and Pediococcus acidilactici probiotic cultures in acidified, refrigerated cucumbers. Thesis Dissertation at North Carolina State University.

    Google Scholar 

  • Chang, J. Y., & Chang, H. C. (2010). Improvements in the quality and shelf-life of kimchi by fermentation with induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. Journal of Food Science, 75, M103–M110.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K. H., McFeeters, R. F., & Fleming, H. P. (1983a). Stability of mannitol to Lactobacillus plantarum degradation in green beans fermented with Lactobacillus cellobiosus. Journal of Food Science, 48(3), 972–974.

    Article  CAS  Google Scholar 

  • Chen, K. H., McFeeters, R. F., & Fleming, H. P. (1983b). Complete heterolactic acid fermentation of green beans by Lactobacillus cellobiosus. Journal of Food Science, 48(3), 967–971.

    Article  CAS  Google Scholar 

  • Cogan, T. M. (1996). History and taxonomy of starter cultures. In T. M. Cogan & J. P. Accolas (Eds.), Dairy starter cultures (pp. 1–23). New York: VCH Publishers.

    Google Scholar 

  • Cogan, T. M., & Hill, C. (1993). Cheese starter cultures. In P. F. Fox (Ed.), Cheese: Chemistry, physics, and microbiology (Vol. 1, 2nd ed., pp. 193–194). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Columela, L. J. M. (1979). 45. De Re Rustica (Vol. II). Spain: Nestlé, A.E.P.A. Santander.

    Google Scholar 

  • Conner, D. E., Brackett, R. E., & Beuchat, L. R. (1986). Effect of temperature, sodium chloride and pH on growth of Listeria monocytogenes in cabbage juice. Applied and Environmental Microbiology, 52, 59–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corsetti, A., Perpetuini, G., Schirone, M., Tofalo, R., Suzzi, G. (2012). Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol., 19(3), 248.

    Google Scholar 

  • Costilow, R. N., Gates, K., & Lacy, M. L. (1980). Molds in brine cucumbers. Cause of softening during air-purging of fermentations. Applied and Environmental Microbiology, 40, 417–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daeschel, M. A., Fleming, H. P., & Potts, E. A. (1985). Compartmentalization of LAB and yeasts in the fermentation of brined cucumbers. Food Microbiology, 2(1), 77–84.

    Article  Google Scholar 

  • De Angelis, M., Campanella, D., Cosmai, L., Summo, C., Rizzello, C. G., & Caponio, F. (2015). Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiology, 52, 8–30.

    Article  CAS  Google Scholar 

  • De Angelis, M., Garruti, G., Minervini, F., Bonfrate, L., Portincasa, P., & Gobbetti, M. (2017). The food-gut human axis: The effects of diet on gut microbiota and metabolome. Current Medicinal Chemistry. https://doi.org/10.2174/0929867324666170428103848.

    Article  CAS  PubMed  Google Scholar 

  • De Bellis, P., Valerio, F., Sisto, A., Lonigro, S. L., & Lavermicocca, P. (2010). Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. International Journal of Food Microbiology, 140, 6–13.

    Article  PubMed  CAS  Google Scholar 

  • De Castro, A., Montaño, A., Casado, F. J., Sánchez, A. H., & Rejano, L. (2002). Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter culture for Spanish-style green olive fermentation. Food Microbiology, 19, 637–644.

    Article  CAS  Google Scholar 

  • DeBoy, R. T., Mongodin, E. F., Fouts, D. E., Tailford, L. E., Khouri, H., Emerson, J. B., Nohanoud, Y., Watkins, K., Henrissat, B., Gilbert, H. J., & Nelson, K. E. (2008). Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. Journal of Bacteriology, 190, 5545–5463.

    Article  CAS  Google Scholar 

  • Delcour, J., Ferain, T., Deghorain, M., Palumbo, E., & Hols, P. (1999). The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek, 76, 159–184.

    Article  CAS  PubMed  Google Scholar 

  • Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2012). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1–10. https://doi.org/10.1016/j.fm.2012.09.003. Epub 2012 Sep 17. Review.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Muñiz, I., Kelling, R., Hale, S., Breidt, F., & McFeeters, R. F. (2007). Lactobacilli and tartrazine as causative agents of a red colored spoilage in cucumber pickle products. Journal of Food Science, 72, M240–M245.

    Article  CAS  Google Scholar 

  • Duran-Quintana, M. C., Gonzalez-Cancho, F., & Garrido-Fernandez, A. (1979). Natural black olives in brine. IX. Production of alambrado by some microorganisms isolated from fermentation brines. Grasas y Aceites, 30, 361–367.

    CAS  Google Scholar 

  • Etchells, J. L. (1941). Incidence of yeasts in cucumber fermentations. Food Research, 6(1), 95–104.

    Article  CAS  Google Scholar 

  • Etchells, J. L., & Bell, T. A. (1950a). Classification of yeasts from the fermentation of commercially brined cucumbers. Farlowia, 4(1), 87–112.

    Google Scholar 

  • Etchells, J. L., & Bell, T. A. (1950b). Film yeasts on commercial cucumber brines. Food Technology, 4(3), 77–83.

    CAS  Google Scholar 

  • Etchells, J. L., Fabian, F. W., & Jones, I. D. (1945). The Aerobacter fermentation of cucumbers during salting. Mich Agric. Expt Sta Tech Bull No. 200. 56 p.

    Google Scholar 

  • Etchells, J. L., Jones, I. D., & Lewis, W. M. (1947). Bacteriological changes during the fermentation of certain brined and salted vegetables. USDA Tech. Bull. No. 947: 64.

    Google Scholar 

  • Etchells, J. L., Costilow, R. N., & Bell, T. A. (1952). Identification of yeasts from commercial cucumber fermentations in northern brining areas. Farlowia, 4(2), 249–264.

    Google Scholar 

  • Etchells, J. L., Costilow, R. N., Anderson, T. E., & Bell, T. A. (1964). Pure culture fermentation of brined cucumbers. Applied Microbiology, 12(6), 523–535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etchells, J. L., Bell, T. A., Fleming, H. P., Kelling, R. E., & Thompson, R. L. (1973). Suggested procedure for the controlled fermentation of commercially brined pickling cucumbers—The use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak Science, 3(1), 4–14.

    Google Scholar 

  • Ewaschuk, J., Naylor, J., & Zello, G. (2005). D-lactate in human and ruminant metabolism. Journal of Nutrition, 135, 1619–1625.

    Article  CAS  PubMed  Google Scholar 

  • Fenlon, D. R. (1985). Wild birds and silage as reservoirs of Listeria in the agricultural environment. Journal of Applied Microbiology, 59, 537–543.

    CAS  Google Scholar 

  • Filannino, P., Di Cagno, R., & Gobbetti, M. (2018). Metabolic and functional paths of LAB in plant foods: Get out of the labyrinth. Current Opinion in Biotechnology, 49, 64–72.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, M. D., & Fleming, S. E. (1999). Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. American Journal of Physiology, 277, G31–G40.

    CAS  PubMed  Google Scholar 

  • Fleming, H. P. (1979). Purging carbon dioxide from cucumber brines to prevent bloater damage—A review. Pickle Pak Science, 6(1), 8–22.

    Google Scholar 

  • Franco, W., & Pérez-Díaz, I. M. (2012). Role of selected oxidative yeasts and bacteria in cucumber secondary fermentation associated with spoilage of the fermented fruit. Food Microbiology, 32, 338–344.

    Google Scholar 

  • Franco, W., Pérez-Díaz, I. M., Johanningsmeier, S. D., & McFeeters, R. F. (2012). Characteristics of spoilage-associated secondary cucumber fermentation. Applied and Environmental Microbiology, 78 (4), 1273–1284.

    Google Scholar 

  • Fred, E. B., & Peterson, W. H. (1922). The production of pink sauerkraut by yeasts. Journal of Bacteriology, 7, 257–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuccio, F., Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2016). Using a polynomial model for fungi from table olives. International Journal of Food Science & Technology, 51, 1276–1283.

    Article  CAS  Google Scholar 

  • Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117.

    Article  Google Scholar 

  • García, M., Serra, N., Pujola, M., & García, J. (1995). Analisis de la fibra alimentaría y sus fracciones por el método de Englyst. Alimentaria, 95, 45–50.

    Google Scholar 

  • Gardner, N. C., Savard, T., Obermeier, P., Caldwell, G., & Champagne, C. P. (2001). Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet, and onion vegetable mixtures. International Journal of Food Microbiology, 64, 261–275.

    Article  CAS  PubMed  Google Scholar 

  • Garrido Fernández, A., Fernández Díez, M. J., & Adams, R. M. (1997). Table olives: Production and processing. London: Chapman & Hall.

    Book  Google Scholar 

  • Geldreich, E. E., & Bordner, R. H. (1971). Fecal contamination of fruits and vegetables during cultivation and processing for market. A review. Journal of Milk and Food Technology, 34, 184–195.

    Article  Google Scholar 

  • Gililland, J. R., & Vaughn, R. H. (1943). Characteristics of butyric acid bacteria from olives. Journal of Bacteriology, 46, 315–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golomb, B. L., Morales, V., Jung, A., Yau, B., Boundy-Mills, K. L., & Marco, M. L. (2013). Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiology, 33, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Cancho, F., Nosti-Vega, M., Fernandez-Diez, M. J., & Buzcu, N. (1970). Propionibacterium spp. associated with olive spoilage. Factors influencing their growth. Microbiología Española, 23, 233–252.

    Google Scholar 

  • Gorvitovskaia, A., Holmes, S. P., & Huse, S. M. (2016). Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome, 4, 15. https://doi.org/10.1186/s40168-016-0160-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grigelmo-Miguel, N., Gorinstein, S., & Martín-Belloso, O. (1999). Characterization of peach dietary fiber concentrate as a food ingredient. Food Chemistry, 65, 175–181.

    Article  CAS  Google Scholar 

  • Han, X., Yi, H., Zhang, L., Huang, W., Zhang, Y., Zhang, L., & Du, M. (2014). Improvement of fermented Chinese cabbage characteristics by selected starter cultures. Journal of Food Science, 79, M1387–M1392.

    Article  CAS  PubMed  Google Scholar 

  • Hemert, S. V., Meijerink, M., Molenaar, D., Bron, P. A., deVos, P., Kleerebezem, M., Wells, J. M., & Marco, M. L. (2010). Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology, 10, 293. https://doi.org/10.1186/1471-2180-10-293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez, A., Martin, A., Aranda, E., Perez-Nevado, F., & Cordoba, M. G. (2007). Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiology, 24, 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Holes, R. (2010). Nature’s spoils. The New Yorker. Retrieved November 22, 2010, from https://www.newyorker.com/magazine/2010/11/22/natures-spoils

  • Hong, S. W., Choi, Y. J., Lee, H. W., Yang, J. H., & Lee, M. A. (2016). Microbial community structure of Korean cabbage kimchi and ingredients with denaturing gradient gel electrophoresis. Journal of Microbiology and Biotechnology, 26(6), 1057–1062. https://doi.org/10.4014/jmb.1512.12035.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K. A., Chen, J. K., Lerke, P. A., Seeger, M. L., & Unverferth, J. A. (1976). Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores. Applied and Environmental Microbiology, 32(1), 121–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johanningsmeier, S. D., & McFeeters, R. F. (2013). Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations. Food Microbiology, 35(2), 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Johanningsmeier, S. D., & McFeeters, R. F. (2015). Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers. International Journal of Food Microbiology, 215, 40–48. https://doi.org/10.1016/j.ijfoodmicro.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  • Johanningsmeier, S. D., Fleming, H. P., Thompson, R. L., & McFeeters, R. F. (2005). Chemical and sensory properties of sauerkraut produced with Leuconostoc mesenteroides starter cultures of differing malolactic phenotypes. Journal of Food Science, 70(5), S343–S349.

    Article  CAS  Google Scholar 

  • Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H. Y., Park, W. S., & Jeon, C. O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153, 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Karl, J. P., Hatch, A. M., Arcidiacono, S. M., Pearce, S. C., Pantoja-Feliciano, I. G., Doherty, L. A., & Soares, J. W. (2018). Effects of psychological, environmental and physical stressors on the gut microbiota. Frontiers in Microbiology, 9, article 2013. https://doi.org/10.3389/fmicb.2018.02013.

    Article  PubMed  Google Scholar 

  • Khalaf, E. M., & Raizada, M. N. (2016). Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiology, 16, 131. https://doi.org/10.1186/s12866-016-0743-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, A. D., & Vaughn, R. H. (1961). Media for detecting pectolytic Gram-negative bacteria associated with the softening of cucumbers, olives and other plant tissues. Journal of Food Science, 26, 635–643.

    Article  Google Scholar 

  • Kishino, S., Takeuchi, M., Park, S. B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., Yokozeki, K., Shimizu, S., & Ogawa, J. (2013). Polyunsaturated fatty acid saturation by gut LAB affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 110, 17808–17813. https://doi.org/10.1073/pnas.1312937110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi, M., Maruoka, N., Furuta, Y., Morita, T., Fukuoka, T., Imura, T., & Kitamoto, D. (2014). Biosurfactant-producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology, and Biochemistry, 78(3), 516–523. https://doi.org/10.1080/09168451.2014.882754. Epub 2014 Apr 16.

    Article  CAS  PubMed  Google Scholar 

  • Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y. S., De Vadder, F., Arora, T., Hallen, A., Martens, E., Björck, I., Bäckhed, F. (2015). Dietaryfiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22(6), 971–982. https://doi.org/10.1016/j.cmet.2015.10.001. Epub2015Nov6.

    Article  CAS  PubMed  Google Scholar 

  • Kyung, K. H., Medina Pradas, E., Kim, S. G., Lee, Y. J., Kim, K. H., Choi, J. J., Cho, J. H., Chung, C. H., Barrangou, R., & Breidt, F. (2015). Microbial ecology of watery kimchi. Journal of Food Science, 80(5), M1031–M1038. https://doi.org/10.1111/1750-3841.12848.

    Article  CAS  PubMed  Google Scholar 

  • Leal-Sánchez, M. V., Jiménez-Díaz, R., Maldonado-Barragán, A., Garrido-Fernández, A., & Ruiz-Barba, J. L. (2002). Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 68, 4465–4471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leben, C. (1972). Micro-organisms associated with plant buds. Journal of General Virology, 71, 327–331.

    Google Scholar 

  • Lee, C. H. (2001). Fermentation technology in Korea. Seoul, South Korea: Korea University Press.

    Google Scholar 

  • Lee, S. A., Park, J., Chu, B., Kim, J. M., Joa, J. H., Sang, M. K., Song, J., & Weon, H. Y. (2016). Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches. Journal of Microbiology, 54(12), 823–831.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M., Song, J. H., Jung, M. Y., Lee, S. H., & Chang, J. Y. (2017). Large-scale targeted metagenomics analysis of bacterial ecological changes in 88 kimchi samples during fermentation. Food Microbiology, 66, 173–183. https://doi.org/10.1016/j.fm.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  • Lefeber, T., Janssens, M., Camu, N., & De Vuyst, L. (2010). Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Applied and Environmental Microbiology, 76(23), 7708–7716. https://doi.org/10.1128/AEM.01206-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T., & Vacher, C. (2017). Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Advances in Botanical Research, 82, 101–133. https://doi.org/10.1016/bs.abr.2016.10.007.

    Article  Google Scholar 

  • Levin, R. E., & Vaughn, R. H. (1966). Desulfovibrio aestuarii, the causative agent of hydrogen sulfide spoilage of fermenting olive brines. Journal of Food Science, 31, 768–772.

    Article  CAS  Google Scholar 

  • Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine Review, 8(1), 51. https://doi.org/10.1186/s13073-016-0307-y.

    Article  Google Scholar 

  • Lopez-Velasco, G., Carder, P. A., Welbaum, G. E., & Ponder, M. A. (2013). Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiology Letters, 346(2), 146–54.

    Google Scholar 

  • Lu, Z., Breidt, F., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003a). Isolation and characterization of a Lactobacillus plantarum bacteriophage, FJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84, 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Breidt, F., Plengvidhya, V., & Fleming, H. P. (2003b). Bacteriophage ecology in commercial sauerkraut fermentations. Applied and Environmental Microbiology, 69, 3192–3202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Altermann, E., Breidt, F., Predki, P., Fleming, H. P., & Klaenhammer, T. R. (2005). Sequence analysis of the Lactobacillus plantarum bacteriophage FJL-1. Gene, 348, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Altermann, E., Breidt, F., & Kozyavkin, S. (2010). Sequence analysis of Leuconostoc mesenteroides bacteriophage (phi)1-A4 isolated from industrial vegetable fermentation. Applied and Environmental Microbiology, 76, 1955–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Pérez-Díaz, I. M., Hayes, J. S., & Breidt, F. (2012). Bacteriophage ecology in a commercial cucumber fermentation. Applied and Environmental Microbiology, 78(24), 8571–8578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund, J., Aas, V., Tingstad, R. H., Van Hees, A., & Nikolić, N. (2018). Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Nature, 8, 9814. https://doi.org/10.1038/s41598-018-28249-5.

    Article  CAS  Google Scholar 

  • Manani, T. A., Collison, E. K., & Mpuchane, S. (2006). Microflora of minimally processed frozen vegetables sold in Gaborone, Botswana. Journal of Food Protection, 69(11), 2581–2586.

    Google Scholar 

  • Marco, M. L., Bongers, R. S., deVos, W. M., & Kleerebezem, M. (2006). Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Food Microbiology, 73(1), 124–132. https://doi.org/10.1128/AEM.01475-06.

    Article  CAS  Google Scholar 

  • Mark, E. M., Vaughn, R. H., Miller, M. W., & Phaff, H. I. (1956). Yeasts occurring in brines during the fermentation and storage of green olives. Food Technology, 10, 416.

    Google Scholar 

  • Marquina, D., Peres, C., Caldas, F. V., Marqjes, J. F., Peipjado, J. M., & Spencer-Martins, I. (1992). Characterization of the yeast population in olive brines. Letters in Applied Microbiology, 14, 279–283.

    Article  Google Scholar 

  • Martínez-Villaluenga, C., Peñas, E., Sidro, B., Ullate, M., Frias, J., & Vidal-Valverde, C. (2012). White cabbage fermentation improves ascorbic content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT- Food Science and Technology, 46, 77–83.

    Article  CAS  Google Scholar 

  • Mattos, F. R., Fasina, O. O., Reina, L. D., Fleming, H. P., Breidt, F., Damasceno, G. S., & Passos, F. V. (2005). Heat transfer and microbial kinetics modeling to determine the location of microorganisms within cucumber fruit. Journal of Food Science, 70(5), E324–E330.

    Article  CAS  Google Scholar 

  • McDonald, L. C., Fleming, H. P., & Hassan, H. M. (1990). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Applied and Environmental Microbiology, 56(7), 2120–2124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., Aksenov, A. A., Behsaz, B., Brennan, C., Chen, Y., DeRight Goldasich, L., Dorrestein, P. C., Dunn, R. R., Fahimipour, A. K., Gaffney, J., Gilbert, J. A., Gogul, G., Green, J. L., Hugenholtz, P., Humphrey, G., Huttenhower, C., Jackson, M. A., Janssen, S., Jeste, D. V., Jiang, L., Kelley, S. T., Knights, D., Kosciolek, T., Ladau, J., Leach, J., Marotz, C., Meleshko, D., Melnik, A. V., Metcalf, J. L., Mohimani, H., Montassier, E., Navas-Molina, J., Nguyen, T. T., Peddada, S., Pevzner, P., Pollard, K. S., Rahnavard, G., Robbins-Pianka, A., Sangwan, N., Shorenstein, J., Smarr, L., Song, S. J., Spector, T., Swafford, A. D., Thackray, V. G., Thompson, L. R., Tripathi, A., Vázquez-Baeza, Y., Vrbanac, A., Wischmeyer, P., Wolfe, E., Zhu, Q., American Gut Consortium, & Knight, R. (2018). American gut: An open platform for citizen. mSystems, 3(3), pii: e00031-18. https://doi.org/10.1128/mSystems.00031-18.

    Article  Google Scholar 

  • McFeeters, R. F., & Pérez-Díaz, I. M. (2010). Fermentation of cucumbers brined with calcium chloride instead of sodium chloride. Journal of Food Science, 75(3), C291–C296.

    Article  CAS  PubMed  Google Scholar 

  • Medina-Pradas, E., & Arroyo-López, F. N. (2015). Presence of toxic microbial metabolites in table olives. Frontiers in Microbiology, 6, 873. https://doi.org/10.3389/fmicb.2015.00873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina-Pradas, E., Pérez-Díaz, I. M., Breidt, F., Hayes, J. S., Franco, W., Butz, N., & Azcarate-Peril, A. (2016). Bacterial ecology of fermented cucumber rising pH spoilage as determined by non-culture based methods. Journal of Food Science, 80(1), M121–M129. https://doi.org/10.1111/1750-3841.13158.

    Article  CAS  Google Scholar 

  • Meneley, J. C., & Stanghellini, M. E. (1974). Detection of enteric bacteria within locular tissue of healthy cucumbers. Journal of Food Science, 39, 1267.

    Article  Google Scholar 

  • Montaño, A., Sánchez, A. H., Rejano, L., & de Castro, A. (1997). Processing and storage of lye-treated carrots fermented by a mixed starter culture. International Journal of Food Microbiology, 35, 83–90.

    Article  PubMed  Google Scholar 

  • Moon, S. H., Chang, M., Kim, H. Y., & Chang, H. C. (2014). Pichia kudriavzevii is the major yeast involved in film-formation, off-odor production, and texture-softening in over-ripened Kimchi. Food Science and Biotechnology, 23, 489–497.

    Article  CAS  Google Scholar 

  • Mundt, O. (1970). LAB associated with raw plant food material. Journal of Milk and Food Technology, 33, 550–553.

    Article  Google Scholar 

  • Mundt, J. O., & Hammer, J. L. (1968). Lactobacilli on plants. Journal of Applied Microbiology, 16(9), 1326–1330.

    CAS  Google Scholar 

  • Nanniga, N. (2010). Did van Leeuwenhoek observe yeast cells in 1680? In Small things considered. American Society for Microbiology. Retrieved from http://schaechter.asmblog.org/schaechter/2010/04/did-van-leeuwenhoek-observe-yeast-cells-in-1680.html

  • Nychas, G. J. E., Panagou, E. Z., Parker, M. L., Waldron, K. W., & Tassou, C. C. (2002). Microbial colonization of naturally black olives during fermentation and associated biochemical activities in the cover brine. Letters in Applied Microbiology, 34, 173–177.

    Article  PubMed  Google Scholar 

  • Ofek, M., Voronov-Goldman, M., Hadar, Y., & Minz, D. (2014). Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16(7), 2157–2167. https://doi.org/10.1111/1462-2920.12228.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, M., & Pérez-Díaz, I. M. (2009). Influence of microbial growth in the redox potential of fermented cucumbers. Journal of Food Science, 74(4), M149–M153.

    Article  CAS  PubMed  Google Scholar 

  • Ottesen, A., R., Gorham, S., reed, E., Newell, M. J., Ramachandran, P., Canida T., Allard, M., Evans, P., Brown, E., White, J. R. (2016). Using a control to better understand phyllosphere micorbiota. PloS ONE 11(9), e0163482. https://doi.org/10.1371/journal.pone.0163482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palomino, J. M., Toledo del Árbol, J., Benomar, N., Abriouel, H., Martínez Cañamero, M., Gálvez, A., & Pérez Pulido, R. (2015). Application of Lactobacillus plantarum Lb9 as starter culture in caper berry fermentation. LWT-Food Science and Technology, 60, 788–794.

    Article  CAS  Google Scholar 

  • Panagou, E. Z., Schillinger, U., Franz, C. M. A. P., & Nychas, G. J. E. (2008). Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of LAB. Food Microbiology, 25, 348–358.

    Article  CAS  PubMed  Google Scholar 

  • Park, E. J., Kim, K. H., Abell, G. C. J., Kim, M. S., Roh, S. W., & Bae, J. W. (2010). Metagenomic analysis of the viral communities in fermented foods. Applied and Environmental Microbiology, 77(4), 1284–1291. https://doi.org/10.1128/AEM.01859-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, E. J., Chun, J., Cha, C. J., Park, W. S., Jeon, C. O., & Bae, J. W. (2012). Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiology, 30(1), 197–204. https://doi.org/10.1016/j.fm.2011.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Pederson, C. S., & Albury, M. N. (1969). The sauerkraut fermentation. N.Y. Agric. Expt. Sta. Bull. 824.

    Google Scholar 

  • Pérez Pulido, R., Omar, N. B., Abriouel, H., Lucas López, R., Martínez Cañamero, M., & Gálvez, A. (2005). Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods. Applied and Environmental Microbiology, 71, 7872–7879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Díaz, I. M., Breidt, F., Buescher, R. W., Arroyo-López, F. N., Jimenez-Diaz, R., Bautista-Gallego, J., Garrido-Fernandez, A., Yoon, S., & Johanningsmeier, S. D. (2014). Fermented and acidified vegetables (Chapter 51). In F. Pouch Downes & K. A. Ito (Eds.), Compendium of methods for the microbiological examination of foods (5th ed.). American Public Health Association.

    Google Scholar 

  • Pérez-Díaz, I. M., McFeeters, R. F., Moeller, L., Johanningsmeier, S. D., Hayes, J. S., Fornea, D., Gilbert, C., Custis, N., Beene, K., & Bass, D. (2015). Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride. Journal of Food Science, 80(12), M2827–M2836. https://doi.org/10.1111/1750-3841.13107.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Díaz, I. M., Hayes, J. S., Medina-Pradas, E., Anekella, K., Daughtry, K. V., Dieck, S., Levi, M., Price, R., Butz, N., Lu, Z., & Azcarate-Peril, M. (2016). Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiology, 63, 217–227. https://doi.org/10.1016/j.fm.2016.11.025.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Díaz, I. M., Hayes, J. S., Medina, E., Webber, A. M., Butz, N., Dickey, A. N., Lu, Z., & Azcarate-Peril, M. A. (2018). Assessment of the non-LAB microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food Microbiology, 77, 10–20. https://doi.org/10.1016/j.fm.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  • Plengvidhya, V., Breidt, F., Lu, Z., & Fleming, H. P. (2007). DNA fingerprinting of LAB in sauerkraut fermentations. Applied and Environmental Microbiology, 73(23), 7697–7702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj, K. C., Ingram, L. O., & Mauphin-Furlow, J. A. (2001). Pyruvate decarboxylase: A key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Archives of Microbiology, 176, 443–451.

    Article  CAS  Google Scholar 

  • Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L., & Leveau, J. H. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal, 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reina, L. D., Fleming, H. P., & Breidt, F. Jr. (2002). Bacterial contamination of cucumber fruit through adhesion. Journal of Food Protection, 65(12), 1881–1887.

    Google Scholar 

  • Rincón-León, F. (2003). Functional foods. In B. Caballero (Ed.), Encyclopedia of food science and nutrition (2nd ed., pp. 2827–2832). New York: Academic Press. https://doi.org/10.1016/B0-12-227055-X/01328-6.

    Chapter  Google Scholar 

  • Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33(2), 103–148. Review. Erratum in: Critical Reviews in Food Science and Nutrition 1993; 33(6):553.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gómez, F., Romero Gil, V., Bautista Gallego, J., García García, P., Garrido Fernández, A., & Arroyo López, F. N. (2014). Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters. Food Microbiology, 44, 278–287.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, M., Martinez-Martinez, D., Amaretti, A., Ulrici, A., Raimondi, S., & Moya, A. (2016). Mining metagenomics whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environmental Microbiology Reports, 8, 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Cruz, J., & Gonzalez-Cancho, F. (1969). The metabolism of yeasts isolated from the brine of pickled Spanish-type green olives. I. The assimilation of lactic, acetic and citric acids. Grasas y Aceites, 20, 6–11.

    CAS  Google Scholar 

  • Salonen, A., & deVos, W. M. (2014). Impact of diet on human intestinal microbiota and health. Annual Review of Food Science and Technology, 5, 239–262. https://doi.org/10.1146/annurev-food-030212-182554.

    Article  CAS  PubMed  Google Scholar 

  • Samish Z., Etinger-Tulczynsky R. (1962). Bacteria within fermenting tomatoes and cucumbers. In: Leitch J. M. Proc. 1st Int. Conm. Food Scie. Technol. Gordon & Breach Science Publications, New York. 2: 373.

    Google Scholar 

  • Samish, Z., Etinger-Tulczynska, R., & Bick, M. (1963). The microflora within the tissue of fruits and vegetables. Journal of Food Science, 28(3), 259–266.

    Google Scholar 

  • Seelinger, H. P. R., & Jones, D. (1986). Genus Listeria, p. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (Vol. 2, p. 1235). Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacterial cells in the body. PLoS Biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, X., Wu, Z., Namvar, A., Kostrzynska, M., Dunfield, K., & Warriner, K. (2009). Microbial population profiles of the microflora associated with pre- and postharvest tomatoes contaminated with Salmonella typhimurium or Salmonella montevideo. Journal of Applied Microbiology, 107(1), 329–338.

    Google Scholar 

  • Siezen, R. J., & van Hylckama Vlieg, J. E. (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microbial Cell Factories, 10 (Suppl 1), S3. PMC3271238. https://doi.org/10.1186/1475-2859-10-S1-S3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215. https://doi.org/10.1038/nature16504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, C., Randic, L., Butler, J. (2009). Survival following profound lactic acidosis and cardiac arrest: does metformin really induce lactic acidosis?J Int. Care Soc. 10(2):115–117.

    Article  Google Scholar 

  • Stamer, J. R., Hrazdina, G., & Stoyla, B. O. (1973). Induction of red color formation in cabbage juice by Lactobacillus brevis and its relationship to pink sauerkraut. Applied Microbiology, 26, 161–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tingirikari, J. M. R. (2018). Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food & Function. https://doi.org/10.1039/c8fo01296b.

    Article  CAS  Google Scholar 

  • Uribarri, J., Oh, M., & Carroll, H. (1998). D-lactic acidosis. Medicine, 77, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn, R. H., Won, W. D., Spencer, F. B., Pappagranis, D., Foda, I. O., & Krumperman, P. M. (1953). Lactobacilllus plantarum, the cause of yeast spots on olives. Applied Microbiology, 1, 82–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughn, R. H., King, A. D., Nagel, C. W., Ng, H., Levin, R. E., Macmilla, J. D., & York, G. K. (1969). Gram-negative bacteria associated with sloughing, a softening of Californian ripe olives. Journal of Food Science, 34, 224–227.

    Article  Google Scholar 

  • Vaughn, R. H., Stevenson, K. E., Dave, B. A., & Park, H. C. (1972). Fermenting yeast associated with softening and gas-pocket formation in olives. Applied Microbiology, 23, 316–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega Leal-Sánchez, M., Ruiz Barba, J. L., Sánchez, A. H., Rejano, L., Jiménez Díaz, R., & Garrido-Fernandez, A. (2003). Fermentation profile and optimization of green olive fermentation using Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiology, 20, 421–430.

    Article  CAS  Google Scholar 

  • Verbeke, K. A., Boobis, A. R., Chiodini, A., Edwards, C. A., Franck, A., Kleerebezem, M., Nauta, A., Raes, J., van Tol, E. A., & Tuohy, K. M. (2015). Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 28, 42–66. https://doi.org/10.1017/S095442415000037.

  • Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Alvarez, J. A. (2010). Role of fiber in cardiovascular diseases: A review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240–258.

    Article  CAS  Google Scholar 

  • Weiss, A., Hertel, C., Grothe, S., Ha, D., Hammes, W. P. (2007). Characterization of the cultivable micorbiota of sprouts and their potential for application as protective cultures. Syst. Appl. Micorbiol. 30(6), 483–493.

    Article  CAS  PubMed  Google Scholar 

  • Welshimer, H. J. (1968). Isolation of Listeria monocytogenes from vegetation. Journal of Bacteriology, 95, 300–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welshimer, H. J., & Donker-Voet, I. (1971). Listeria monocytogenes in nature. Applied Microbiology, 21, 516–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  • West, N. S., Gililland, J. R., & Vaughn, R. H. (1941). Characteristics of coliform bacteria from olives. Journal of Bacteriology, 41, 341–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S. S., Barrangou-Poueys, R., Breidt, F., Klaenhammer, T. R., & Fleming, H. P. (2002). Isolation and characterization of bacteriophages from fermenting sauerkraut. Applied and Environmental Microbiology, 68, 973–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S. S., Barrangou-Poueys, R., Breidt, F., & Fleming, H. P. (2007). Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. Journal of Microbiology and Biotechnology, 17, 262–270.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilenys M. Pérez-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Díaz, I.M. (2019). Fermented Vegetables as Vectors for Relocation of Microbial Diversity from the Environment to the Human Gut. In: Azcarate-Peril, M., Arnold, R., Bruno-Bárcena, J. (eds) How Fermented Foods Feed a Healthy Gut Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-030-28737-5_4

Download citation

Publish with us

Policies and ethics