Skip to main content

Unsupervised Artificial Neural Networks for Outlier Detection in High-Dimensional Data

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2019)

Abstract

Outlier detection is an important field in data mining. For high-dimensional data the task is particularly challenging because of the so-called “curse of dimensionality”: The notion of neighborhood becomes meaningless, and points typically show their outlying behavior only in subspaces. As a result, traditional approaches are ineffective. Because of the lack of a ground truth in real-world data and of a priori knowledge about the characteristics of potential outliers, outlier detection should be considered an unsupervised learning problem. In this paper, we examine the usefulness of unsupervised artificial neural networks – autoencoders, self-organising maps and restricted Boltzmann machines – to detect outliers in high-dimensional data in a fully unsupervised way. Each of those approaches targets at learning an approximate representation of the data. We show that one can measure the “outlierness” of objects effectively, by measuring their deviation from the learned representation. Our experiments show that neural-based approaches outperform the current state of the art in terms of both runtime and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Cognitana-Research/NNOHD.

  2. 2.

    https://github.com/Cognitana-Research/NNOHD.

References

  1. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: SIGMOD Conference, pp. 37–46. ACM (2001). https://doi.org/10.1145/376284.375668

    Article  Google Scholar 

  2. Attik, M., Bougrain, L., Alexandre, F.: Self-organizing map initialization. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 357–362. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822_56

    Chapter  Google Scholar 

  3. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  4. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_15

    Chapter  Google Scholar 

  5. Bishop, C.M.: Novelty detection and neural network validation. In: ICANN 1993, pp. 789–794 (1993). https://doi.org/10.1007/978-1-4471-2063-6_225

    Chapter  Google Scholar 

  6. Bourland, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4), 291–294 (1988). https://doi.org/10.1007/BF00332918

    Article  MathSciNet  MATH  Google Scholar 

  7. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: SIGMOD Conference, pp. 93–104. ACM (2000). https://doi.org/10.1145/335191.335388

    Article  Google Scholar 

  8. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Discov. 30(4), 891–927 (2016). https://doi.org/10.1007/s10618-015-0444-8

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Sathe, S., Aggarwal, C.C., Turaga, D.S.: Outlier detection with autoencoder ensembles. In: SDM, pp. 90–98. SIAM (2017). https://doi.org/10.1137/1.9781611974973.11

    Chapter  Google Scholar 

  10. Chen, Y., Lu, L., Li, X.: Application of continuous restricted boltzmann machine to identify multivariate geochemical anomaly. J. Geochem. Explor. 140, 56–63 (2014). https://doi.org/10.1016/j.gexplo.2014.02.013

    Article  Google Scholar 

  11. Ciampi, A., Lechevallier, Y.: Clustering large, multi-level data sets: an approach based on Kohonen Self Organizing Maps. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 353–358. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_36

    Chapter  Google Scholar 

  12. Dau, H.A., Ciesielski, V., Song, A.: Anomaly detection using replicator neural networks trained on examples of one class. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 311–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_27

    Chapter  Google Scholar 

  13. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: ICML, ACM International Conference Proceeding Series, vol. 148, pp. 233–240. ACM (2006). https://doi.org/10.1145/1143844.1143874

  14. Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.edu/ml

  15. Fiore, U., Palmieri, F., Castiglione, A., Santis, A.D.: Network anomaly detection with the restricted boltzmann machine. Neurocomputing 122, 13–23 (2013). https://doi.org/10.1016/j.neucom.2012.11.050

    Article  Google Scholar 

  16. Hahnloser, R.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, S.H.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000). https://doi.org/10.1038/35016072

    Article  Google Scholar 

  17. Hawkins, D.M.: Identification of Outliers, Monographs on Applied Probability and Statistics, vol. 11. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4

    Book  Google Scholar 

  18. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46145-0_17

    Chapter  Google Scholar 

  19. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002). https://doi.org/10.1162/089976602760128018

    Article  MATH  Google Scholar 

  20. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  21. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and helmholtz free energy. In: NIPS, pp. 3–10. Morgan Kaufmann (1993). http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy

  22. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 6(2), 107–116 (1998). https://doi.org/10.1142/S0218488598000094

    Article  MathSciNet  MATH  Google Scholar 

  23. Japkowicz, N., Myers, C., Gluck, M.A.: A novelty detection approach to classification. In: IJCAI, pp. 518–523. Morgan Kaufmann (1995). http://ijcai.org/Proceedings/95-1/Papers/068.pdf

  24. Keller, F., Müller, E., Böhm, K.: HiCS: high contrast subspaces for density-based outlier ranking. In: ICDE, pp. 1037–1048. IEEE Computer Society (2012). https://doi.org/10.1109/icde.2012.88

  25. Kelley, H.J.: Gradient theory of optimal flight paths. ARS J. 30(10), 947–954 (1960). https://doi.org/10.2514/8.5282

    Article  MATH  Google Scholar 

  26. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/bf00337288

    Article  MATH  Google Scholar 

  27. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97610-0

    Book  Google Scholar 

  28. Kriegel, H., Kröger, P., Schubert, E., Zimek, A.: Loop: local outlier probabilities. In: CIKM, pp. 1649–1652. ACM (2009). https://doi.org/10.1145/1645953.1646195

  29. Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 831–838. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_86

    Chapter  Google Scholar 

  30. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2008, ACM Press, New York, NY, USA, pp. 444–452 (2008). https://doi.org/10.1145/1401890.1401946

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  32. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. Math. 16(2), 146–160 (1976). https://doi.org/10.1007/BF01931367

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: ICDM, pp. 413–422. IEEE Computer Society (2008). https://doi.org/10.1109/ICDM.2008.17

  34. Marchi, E., Vesperini, F., Eyben, F., Squartini, S., Schuller, B.W.: A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks. In: ICASSP, pp. 1996–2000. IEEE (2015). https://doi.org/10.1109/ICASSP.2015.7178320

  35. Müller, E., Schiffer, M., Seidl, T.: Adaptive outlierness for subspace outlier ranking. In: CIKM, pp. 1629–1632. ACM (2010). https://doi.org/10.1145/1871437.1871690

  36. Müller, E., Schiffer, M., Seidl, T.: Statistical selection of relevant subspace projections for outlier ranking. In: ICDE, pp. 434–445. IEEE Computer Society (2011). https://doi.org/10.1109/ICDE.2011.5767916

  37. Muñoz, A., Muruzábal, J.: Self-organising maps for outlier detection. Neurocomputing 18(1), 33–60 (1998). https://doi.org/10.1016/S0925-2312(97)00068-4

    Article  Google Scholar 

  38. Nguyen, H.V., Gopalkrishnan, V., Assent, I.: An unbiased distance-based outlier detection approach for high-dimensional data. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 138–152. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20149-3_12

    Chapter  Google Scholar 

  39. Nguyen, H.V., Müller, E., Vreeken, J., Keller, F., Böhm, K.: CMI: an information-theoretic contrast measure for enhancing subspace cluster and outlier detection. In: SDM, pp. 198–206 (2013). https://doi.org/10.1137/1.9781611972832.22

  40. Provost, F.J., Fawcett, T.: Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In: KDD, pp. 43–48. AAAI Press (1997), http://www.aaai.org/Library/KDD/1997/kdd97-007.php

  41. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: SIGMOD Conference, pp. 427–438. ACM (2000). https://doi.org/10.1145/342009.335437

  42. Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu

  43. Reddy, K.K., Sarkar, S., Venugopalan, V., Giering, M.: Anomaly detection and fault disambiguation in large flight data: a multi-modal deep autoencoder approach. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society, Denver, Colorado. PHMC 2016, PHM Society, Rochester, NY, USA, vol. 7, pp. 192–199 (2016). http://www.phmsociety.org/node/2088/

  44. Rubinstein, R.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1(2), 127–190 (1999). https://doi.org/10.1023/A:1010091220143

    Article  MathSciNet  MATH  Google Scholar 

  45. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 18(5), 401–409 (1969). https://doi.org/10.1109/T-C.1969.222678

    Article  Google Scholar 

  46. Sathe, S., Aggarwal, C.C.: LODES: local density meets spectral outlier detection. In: SDM, pp. 171–179. SIAM (2016). https://doi.org/10.1137/1.9781611974348.20

  47. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001). https://doi.org/10.1162/089976601750264965

    Article  MATH  Google Scholar 

  48. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A framework for clustering uncertain data. PVLDB 8(12), 1976–1979 (2015). http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf

    Google Scholar 

  49. Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group, C. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, pp. 194–281. MIT Press, Cambridge (1986). http://dl.acm.org/citation.cfm?id=104279.104290

  50. Wittek, P.: Somoclu: an efficient distributed library for self-organizing maps. CoRR abs/1305.1422 (2013). http://arxiv.org/abs/1305.1422

  51. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701 (2012). http://arxiv.org/abs/1212.5701

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Popovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popovic, D., Fouché, E., Böhm, K. (2019). Unsupervised Artificial Neural Networks for Outlier Detection in High-Dimensional Data. In: Welzer, T., Eder, J., Podgorelec, V., Kamišalić Latifić, A. (eds) Advances in Databases and Information Systems. ADBIS 2019. Lecture Notes in Computer Science(), vol 11695. Springer, Cham. https://doi.org/10.1007/978-3-030-28730-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28730-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28729-0

  • Online ISBN: 978-3-030-28730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics