Skip to main content
  • 3156 Accesses

Abstract

A strong attempt is made to provide practical guidelines for CFD meshes. Dozens of mesh metrics are described in detail, and a mathematically-driven, physics-based set of “golden” mesh metrics is recommended. General CFD boundary and initial conditions are described, including boundary compatibility. Time step, stability, domain, and calculation speed-up guidelines are provided. Detailed guidelines for modeling laminar and turbulent natural circulation are discussed. The chapter concludes with dozens of data visualization recommendations for generating figures, movies, and other presentation media, with the goal of more effectively conveying the CFD results.

“The result was very happy.” Osborne Reynolds upon the initial formulation and validation of his dimensionless number, 1883.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1984). Computational fluid mechanics and heat transfer. New York: Hemisphere Publishing Corporation.

    MATH  Google Scholar 

  • Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge University Press.

    Google Scholar 

  • Blasius, H. (1908). Grenzschichten in Flussigkeiten mit kleiner Reibung. Zeitschrift für Angewandte Mathematik und Physik, 56(1). Also available in English as, “The Boundary Layers in Fluids with Little Friction”, National Advisory Committee for Aeronautics, Technical Memorandum 1256, 1950.

    Google Scholar 

  • Bna, S., et al. (2012, June). Heat transfer numerical simulations with the four parameter k-ω-ktt model for low-Prandtl Number liquid metals, XXX UIT Heat Transfer Conference, Bologna.

    Google Scholar 

  • Bolaños, S. J., & Vernescu, B. (2017). Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Physics of Fluids, 29, 057103.

    Article  Google Scholar 

  • Brewer, M. L., & Marcum, D. (2008). Proceedings of the 16th international meshing roundtable. Springer.

    Google Scholar 

  • Chen, F., et al. (2013). Investigation on the applicability of Turbulent-Prandtl-Number models for liquid Lead-Bismuth Eutectic. Nuclear Engineering and Design, 257, 128.

    Article  Google Scholar 

  • Courant, R., Friedrichs, K., & Lewy, H. (1967, March). On the partial difference equations of mathematical physics. IBM Journal. (English version; the German version first appeared in Mathematische Annalen, Vol. 100, in 1928).

    Google Scholar 

  • Cubit. (2017). CUBIT 15.3 user documentation, SAND2017-6895 W, Sandia National Laboratories. Also available at https://cubit.sandia.gov/public/15.3/help_manual/WebHelp/cubithelp.htm. Accessed on 27 June 2018.

  • DuChateau, & Zachmann. (2011). Partial differential equations (3rd ed.). New York: Schaum’s Outlines, McGraw-Hill.

    Google Scholar 

  • Fernandez-Cosials, K., et al. (2017). Three-dimensional simulation of a LBLOCA in an AP1000 containment building. Energy Procedia, 127, 235–241.

    Article  Google Scholar 

  • FIDAP Version 8.52, Theory and user’s manual, Fluent, Inc., 1999. (FIDAP uses the FIMESH meshing software.)

    Google Scholar 

  • Finn, J. R., & Dogan, O. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation, Proceedings of the ASME Turbo Expo, GT2019-91791.

    Google Scholar 

  • Flownex. (2019, May 15). Transient simulations run 7 times faster in upcoming 2019 Flownex release, e-mail correspondence.

    Google Scholar 

  • Fluent. (2009). ANSYS FLUENT 12.0 user’s guide.

    Google Scholar 

  • Fluent. (2012). Best practice guidelines, Lecture 10, ANSYS.

    Google Scholar 

  • Fluent. (2018). ANSYS FLUENT 16.2.3 User’s Guide. Also available at https://www.sharcnet.ca/Software/Ansys/16.2.3. Accessed on 27 June 2018.

  • Fuego (2016). SIERRA low Mach module: Fuego user manual – Version 4.40. Albuquerque: Sandia National Laboratories.

    Google Scholar 

  • Gleick, J. (1988). Chaos. New York: Penguin Books.

    MATH  Google Scholar 

  • Grunloh, T. (2019). Accelerate CFD high fidelity fluid dynamics in a fraction of the time. Illinois Rocstar.

    Google Scholar 

  • Haberman, R. (2004). Applied partial differential equations with fourier series and boundary value problems (4th ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Hanson, R. (2012). Aerodynamics. University of Toronto Institute for Aerospace Studies, AER307.

    Google Scholar 

  • Hasan, B. O. (2007). Turbulent Prandtl Number and its use in prediction of heat transfer coefficient for liquids. Nahrain University, College of Engineering Journal (NUCEJ), 10(1), 53.

    MathSciNet  Google Scholar 

  • Holman, J. (1990). Heat transfer (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  • HyperMesh. Element quality and checks, https://altairhyperworks.com/product/HyperMesh. Can also access at https://www.scribd.com/doc/6675303/Hypermesh-Quality-Tutorials. Accessed on 26 June 2018.

  • Jischa, M., & Rieke, H. B. (1979). About the prediction of turbulent Prandtl and Schmidt Numbers from modeled transport equations. International Journal of Heat and Mass Transfer, 22, 1547.

    Article  Google Scholar 

  • Joshi, J., & Nayak, A. (2019). Fluid dynamics in nuclear reactor design and safety assessment (1st ed.). Duxford: Woodhead Publishing.

    Google Scholar 

  • Knupp, P. M. (2000). Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. International Journal for Numerical Methods in Engineering, 48, 1165.

    Article  Google Scholar 

  • Knupp, P. M. (2001). Algebraic mesh quality metrics. SIAM Journal on Scientific Computing, 23(1), 193.

    Article  MathSciNet  Google Scholar 

  • Knupp, P. M. (2003). Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design, 39, 217.

    Article  Google Scholar 

  • Knupp, P. M. (2007). Remarks on mesh quality, 45th AIAA aerospace sciences meeting and exhibit. Also available as Sandia National Laboratories SAND2007-8128C.

    Google Scholar 

  • Kreyzig, E. (1979). Advanced engineering mathematics (4th ed.). New York: Wiley.

    Google Scholar 

  • Lawry, M. H. (2000). I-DEAS student guide, Structural Dynamics Research Corporation, Structural Dynamics Research Corporation, Can also be found under https://www.scribd.com/doc/46303903/I-DEAS-Student-Guide.

  • Leonardi, S., & Castro, I. P. (2010). Channel flow over large cube roughness: A direct numerical simulation study. Journal of Fluid Mechanics, 651, 519.

    Google Scholar 

  • Lin, M., Wang, Q. W., & Guo, Z. X. (2012). A simple method for predicting bulk temperature from tube wall temperature with uniform outside wall heat flux. International Communications in Heat and Mass Transfer, 39, 582.

    Article  Google Scholar 

  • Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130.

    Article  MathSciNet  Google Scholar 

  • Ly, H. V., & Tran, H. T. (2001). Modeling and control of physical processes using proper orthogonal decomposition. Mathematical and Computer Modelling, 33, 223.

    Article  Google Scholar 

  • Nordstrom, J., Nordin, N., & Henningson, D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM, Journal of Scientific Computing, 20(4), 1365.

    Google Scholar 

  • Orszag, S. A., & Israeli, M. (1974). Numerical simulation of viscous incompressible flows. Annual Review of Fluid Mechanics, 6, 681.

    Article  Google Scholar 

  • Ostrach, S. (1953). An analysis of Laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force, Report 1111, National Advisory Committee for Aeronautics, NASA.

    Google Scholar 

  • Otero R. G. J., Patel, A., & Pecnik, R. (2018). A novel approach to accurately model heat transfer to supercritical fluids, The 6th international symposium – supercritical CO2 power cycles.

    Google Scholar 

  • Pritamashutosh. (2014). Differential equation of motion for steady compressible flow, https://pritamashutosh.wordpress.com/2014/02/28/differential-equation-of-motion-for-steady-compressible-flow. Accessed on 3 Sept 2018.

  • Rempfer, D. (2006). On boundary conditions for incompressible Navier-Stokes problems. ASME Applied Mechanics Reviews, 59, 107.

    Article  Google Scholar 

  • Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the Law of Resistance in parallel channels. Philosophical Transactions of the Royal Society of London, 174. (Can also be obtained through JSTOR, http://www.jstor.org).

    Google Scholar 

  • Robinson, J. (1987). CRE method of element testing and the Jacobian shape parameters. Engineering with Computers, 4, 113.

    Article  Google Scholar 

  • Rodi, W., et al. (1997). Status of the large eddy simulation: Results of a workshop. Transactions of the ASME, Journal of Fluids Engineering, 119, 248.

    Article  Google Scholar 

  • Rodriguez, S. (2011, May). Swirling Jets for the Mitigation of Hot Spots and Thermal Stratification in the VHTR Lower Plenum, PhD Diss., University of New Mexico.

    Google Scholar 

  • Rodriguez, S., & Ames, D. (2015, November). Design optimization for miniature nuclear reactors, American Nuclear Society, Winter Meeting.

    Google Scholar 

  • Rodriguez, S., & Turner, D. Z. (2012). Assessment of existing Sierra/Fuego capabilities related to Grid-To-Rod-Fretting (GTRF). Sandia National Laboratories, SAND2012-0530.

    Google Scholar 

  • Rodriguez, S., & El-Genk, M. S. (2010). Cooling of an isothermal plate using a triangular array of swirling air jets. American Society of Mechanical Engineers, IHTC14-22170.

    Google Scholar 

  • Sanders, M. S., & McCormick, E. J. (1987). Human factors in engineering and design (6th ed.). New York: McGraw-Hill Publishing Co.

    Google Scholar 

  • SDRC. (1988). I-DEAS user’s guide (Vol. 1 and 2). Structural Dynamics Research Corporation.

    Google Scholar 

  • Spalart, P. R. (1990). Direct numerical study of crossflow instability, laminar-turbulent transition, IUTAM Symposium.

    Google Scholar 

  • Stimpson, C. J., et al. (2007). The verdict geometric quality library. Sandia National Laboratories, SAND2007-1751.

    Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Cambridge: Westview Press.

    Google Scholar 

  • Tabeling, P. (2009). Introduction to microfluidics. Oxford: Oxford University Press.

    Google Scholar 

  • Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics, 68, 1.

    Article  MathSciNet  Google Scholar 

  • Tutar, M., & Holdo, A. E. (2001). Computational modeling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35, 763.

    Article  Google Scholar 

  • Wang, G. R., Yang, F., & Zhao, W. (2014). There can be turbulence in microfluidics at low Reynolds Number. Lab on a Chip, 14, 1452.

    Article  Google Scholar 

  • White, F. (1991). Viscous fluid flow (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.)., printed on 2006 and 2010.

    Google Scholar 

  • Willcox, K., & Peraire, J. (2002). Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40(11), 2323.

    Article  Google Scholar 

  • Yokomine, T., et al. (2007). Experimental investigation of turbulent heat transfer of high Prandtl number fluid flow under strong magnetic field. Fusion Science and Technology, 52, 625.

    Article  Google Scholar 

  • Zigh, G., & Solis, J. (2013). Computational fluid dynamics best practice guidelines for dry cask application. USNRC, NUREG-2152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez, S. (2019). Best Practices of the CFD Trade. In: Applied Computational Fluid Dynamics and Turbulence Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-28691-0_6

Download citation

Publish with us

Policies and ethics