Skip to main content

Abstract

This chapter is divided into two parts, LES and DNS. In the first part, the LES turbulence model is derived from first principles, and its terms are described in detail. The usage of LES filters is described, along with various recommendations. The LIKE algorithm is applied to show how to model large eddies properly by applying the appropriate node-to-node computational distances. LES-specific boundary and initial conditions are described, and dozens of practical recommendations are provided. In the second part, analogous discussions and recommendations for DNS are included as well.

Given the erratic track record of most turbulence models, new ideas are always welcome.— David Wilcox 2006

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afgan, I. (2007, July). Large eddy simulation of flow over cylindrical bodies using unstructured finite volume meshes, PhD Diss., University of Manchester.

    Google Scholar 

  • Alfonsi, G. (2011). Direct numerical simulation of turbulent flows. ASME Applied Mechanics Reviews, 64, 020802.

    Article  Google Scholar 

  • Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modeling, 39, 693.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonaldo, A. (2007). Experimental characterisation of Swirl stabilized annular stratified flames, PhD Diss., Cranfield University.

    Google Scholar 

  • Bouffanais, R. (2010). Advances and challenges of applied large-eddy simulation. Computers & Fluids, 39, 735.

    Article  MATH  Google Scholar 

  • Busch, H., Ryan, K., & Sheard, G. J. (2007, Dec 2–7). Strain-rate development between a co-rotating Lamb-Oseen Vortex pair of unequal strength, 16th Australasian fluid mechanics conference, Gold Coast, Australia.

    Google Scholar 

  • Chu, X., et al. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11.

    Article  Google Scholar 

  • CFD-Online, “RNG-LES Model”, https://www.cfd-online.com/Wiki/RNG-LES_model. Accessed on 13 July 2018.

  • Clark, R. A., Ferziger, J. H., & Reynolds, W. C. (1979). Evaluation of subgrid-scale models using an accurately simulated turbulent flow. Journal of Fluid Mechanics, 91(Part 1), 1.

    Article  MATH  Google Scholar 

  • Coleman, G. N., & Sandberg, R. D. (2010). A primer on direct numerical simulation of turbulence – Methods, procedures and guidelines. Aerodynamics & Flight Mechanics Research Group, University of Southampton.

    Google Scholar 

  • Day, M., et al. (2009). Combined computational and experimental characterization of Lean premixed turbulent low Swirl laboratory flames. Lawrence Berkeley National Laboratories, circa.

    Google Scholar 

  • Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(Part 2), 453.

    Article  MATH  Google Scholar 

  • Deardorff, J. W. (1971). On the magnitude of the subgrid scale eddy coefficient. Journal of Computational Physics, 7, 120.

    Article  MATH  Google Scholar 

  • Dong, S., & Karniadakis, G. E. (2005). DNS of flow past a stationary and oscillating cylinder at Re = 10000. Journal of Fluids and Structures, 20, 519.

    Article  Google Scholar 

  • Drikakis, D., & Geurts, B. J. (Eds.). (2002). Turbulent flow computation. Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Duraisamy, K., & Lele, S. K. (2006). DNS of temporal evolution of isolated vortices, Center for Turbulence Research, Proceedings of the Summer Program.

    Google Scholar 

  • Elghobashi. (2019). Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annual Review of Fluid Mechanics, 51, 217.

    Article  MathSciNet  MATH  Google Scholar 

  • Facciolo, L. (2006). A study on axially rotating pipe and swirling jet flows, Royal Institute of Technology, Department of Mechanics, S-100 44 Stockholm, Sweden, PhD Diss.

    Google Scholar 

  • Ferziger, J. H. (1977). Large eddy numerical simulations of turbulent flows. AIAA Journal, 15(9), 1261.

    Article  MATH  Google Scholar 

  • Finn, J. R., & Dogan, O. N. (2019). Analyzing the potential for erosion in a supercritical CO2 turbine nozzle with large eddy simulation, Proc. of the ASME Turbo Expo, GT2019-91791.

    Google Scholar 

  • Freitag, M., & Klein, M. (2005). Direct numerical simulation of a recirculating swirling flow. Flow, Turbulence and Combustion, 75, 51.

    Article  MATH  Google Scholar 

  • Fuego. (2016a). SIERRA low Mach module: Fuego theory manual – Version 4.40. Sandia National Laboratories.

    Google Scholar 

  • Fuego. (2016b). SIERRA low Mach module: Fuego user manual – Version 4.40. Sandia National Laboratories.

    Google Scholar 

  • Galperin, B., & Orszag, S. A. (Eds.). (1993). Large eddy simulation of complex engineering and geophysical flows. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Garnier, E., Adams, N., & Sagaut, P. (2009). Large eddy simulation for compressible flows. Netherlands: Springer.

    Google Scholar 

  • Germano, M., et al. (1991). A dynamic subgrid scale eddy viscosity model. Physics of Fluids A, 3(7), 1760.

    Article  MATH  Google Scholar 

  • Huser, A., & Biringen, S. (1993). Direct numerical simulation of turbulent flow in a square duct. Journal of Fluid Mechanics, 257, 65.

    Article  MATH  Google Scholar 

  • Jarrin, N., et al. (2006). A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow, 27, 585.

    Article  Google Scholar 

  • Jeng, D. T. (1969). Forced model equation for turbulence. Physics of Fluids, 12(10), 2006.

    Article  MATH  Google Scholar 

  • Joshi, J., & Nayak, A. (2019). Advances of computational fluid Dynamics in nuclear reactor design and safety assessment (1st ed.). Cambridge: Woodhead Publishing.

    Google Scholar 

  • Joslin, R. D. (2012). Discussion of DNS: Past, present, and future. NASA, Langley Research Center, circa.

    Google Scholar 

  • Kaneda, Y., & Ishihara, T. (2006). High-resolution direct numerical simulation of turbulence. Journal of Turbulence, 7(20), 20.

    Article  Google Scholar 

  • Kim, W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulation, 33rd aerospace sciences meeting and exhibit, Reno, Nevada.

    Google Scholar 

  • Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133.

    Article  MATH  Google Scholar 

  • Kleissl, J., & Parlange, M. B. (2004). Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. Journal of the Atmospheric Sciences, 61, 2296.

    Article  Google Scholar 

  • Lee, S. R., et al. (2019). Topological quantum materials for realizing majorana quasiparticles. Chemistry of Materials, 31, 26. (Also available as SAND2018-11285J through Sandia National Laboratories).

    Article  Google Scholar 

  • Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flow. Advances in Geophysics, 18, 237.

    Article  Google Scholar 

  • Leonardi, S., & Castro, I. P. (2010). Channel flow over large cube roughness: A direct numerical simulation study. Journal of Fluid Mechanics, 651, 519.

    Article  MATH  Google Scholar 

  • Lesieur, M., Metais, O., & Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lilly, D. K. (1966). The representation of small-scale turbulence in numerical simulation experiments. National Center for Atmospheric Research, NCAR Manuscript 281.

    Google Scholar 

  • Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4(3), 633.

    Article  Google Scholar 

  • Mansour, N. N., et al. (1977). Improved methods for large-eddy simulation of turbulence, Proc. Penn State Symp, Turbulent Shear Flows.

    Google Scholar 

  • Modi, A. (1999). Direct numerical simulation of turbulent flows. Penn State University.

    Google Scholar 

  • Moet, H., et al. (2004). Wave propagation in Vortices and Vortex bursting. Physics of Fluids, 1–55.

    Google Scholar 

  • Moin, P., & Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539.

    Article  MathSciNet  MATH  Google Scholar 

  • Naqavi, I. Z., Tyacke, J. C., & Tucker, P. G. (2018). Direct numerical simulation of a wall jet: Flow physics. Journal of Fluid Mechanics, 852, 507.

    Article  MathSciNet  MATH  Google Scholar 

  • Nicoud, F., & Ducros, F. (1999). Subgrid-scale modeling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183.

    Article  MATH  Google Scholar 

  • Nicoud, F., et al. (2011). Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23, 085106.

    Article  Google Scholar 

  • Nordstrom, J., Nordin, N., & Henningson, D. (1999). The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM, Journal of Scientific Computing, 20(4), 1365.

    Article  MathSciNet  MATH  Google Scholar 

  • Orszag, S. A., & Israeli, M. (1974). Numerical simulation of viscous incompressible flows. Annual Review of Fluid Mechanics, 6, 681.

    Google Scholar 

  • Rai, M. M., & Moin, P. (1991). Direct simulation of turbulent flow using finite difference schemes. Journal of Computational Physics, 96, 15. (Also available as Fluid Mechanics and Heat Transfer, AIAA Paper 89-0369, 1989).

    Article  MATH  Google Scholar 

  • Rodi, W., et al. (1997). Status of the large eddy simulation: Results of a workshop. Transactions of the ASME, Journal of Fluids Engineering, 119, 248.

    Article  Google Scholar 

  • Rodriguez, S. (2000). A 4th order, implicit, adaptive mesh refinement algorithm for simulation of flame-vortex interactions, Master Th., University of New Mexico.

    Google Scholar 

  • Rodriguez, S. (2011, May). Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum, PhD Diss., University of New Mexico.

    Google Scholar 

  • Rogallo, R. S., & Moin, P. (1984). Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16, 99.

    Article  MATH  Google Scholar 

  • Rudinger, K. (2017). Quantum computing is and is not amazing. Sandia National Laboratories, SAND2017-7067C.

    Google Scholar 

  • Sandia. (2011) Quantum Information Science and Technology (QIST), https://www.sandia.gov/QIST. Sandia National Laboratories. Accessed on 3 May 2019.

  • Sengupta, T. K., & Bhaumik, S. (2019). DNS of wall-bounded turbulent flows: A first principle approach. Singapore: Springer.

    Book  MATH  Google Scholar 

  • Shaanan, S., Ferziger, J. H., & Reynolds, W. C. (1975). Numerical simulation of turbulence in the presence of shear, Report No. TF-6, Dept. of Mechanical Engineering, Stanford University.

    Google Scholar 

  • Singer, N. (2019). Quantum computing steps further ahead with new projects. Sandia National Laboratories, Sandia LabNews.

    Google Scholar 

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations I. The basic experiment. Monthly Weather Report, 91(3), 99.

    Article  Google Scholar 

  • Sodja, J. (2007). Turbulence models in CFD. University of Ljubljana.

    Google Scholar 

  • Spalart, P. R. (1990). Direct numerical study of crossflow instability, laminar-turbulent transition, IUTAM Symposium.

    Google Scholar 

  • Stefano, G., & Vasilyev, O. V. (2002). Sharp cutoff versus smooth filtering in large eddy simulation. Physics of Fluids, 14(1), 362.

    Article  MATH  Google Scholar 

  • Stein, O. (2009, March). Large eddy simulation of combustion in swirling and opposed jet flows, PhD Diss., Imperial College London.

    Google Scholar 

  • Taub, G., et al. (2010, Jan 4–7). A numerical investigation of swirling turbulent Buoyant jets at transient Reynolds numbers, 48th AIAA aerospace sciences meeting, AIAA 2010-1362, Orlando, Florida.

    Google Scholar 

  • Terentiev, L. (2006). The turbulence closure model based on linear anisotropy invariant analysis, Universitat Erlangen-Nurnberg, PhD Diss.

    Google Scholar 

  • Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics, 68, 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Tryggvason, G., & Buongiorno, J. (2013). The role of direct numerical simulations in validation and verification. University of Notre Dame and Massachusetts Institute of Technology, circa.

    Google Scholar 

  • Tutar, M., & Holdo, A. E. (2001). Computational modeling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35, 763.

    Article  MATH  Google Scholar 

  • Tyacke, J., et al. (2014). Large eddy simulation for turbines: Methodologies, cost and future outlooks. ASME, Journal of Turbomachinery, 136, 061009.

    Article  Google Scholar 

  • Verstappen, R. W. C. P., & Veldman, A. E. P. (1997). Direct numerical simulation of turbulence at lower costs. Journal of Engineering Mathematics, 32, 143.

    Article  MathSciNet  MATH  Google Scholar 

  • Vreman, A. W. (2004). An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670.

    Article  MATH  Google Scholar 

  • Walther, J. H., et al. (2007). A numerical study of the stability of Helical Vortices using Vortex methods. Journal of Physics: Conference Series, 75, 012034.

    Google Scholar 

  • Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.)., printed on 2006 and 2010.

    Google Scholar 

  • Wu, X. (2017). Inflow turbulence generation methods. Annual Review of Fluid Mechanics, 49, 23.

    Article  MathSciNet  MATH  Google Scholar 

  • Yeon, S. M. (2014). Large-eddy simulation of sub-, critical and super-critical Reynolds number flow past a circular cylinder, U. of Iowa, PhD Diss.

    Google Scholar 

  • Yeung, P., et al. (2010). Turbulence computations on a 40963 periodic domain: Passive scalars at high schmidt number and Lagrangian statistics conditioned on local flow structure, 63rd Annual meeting of the APS Division of Fluid Dynamics, Vol. 55, No. 16, Long Beach, California.

    Google Scholar 

  • You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids, 19(6), 065110.

    Article  MATH  Google Scholar 

  • Zhiyin, Y. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez, S. (2019). LES and DNS Turbulence Modeling. In: Applied Computational Fluid Dynamics and Turbulence Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-28691-0_5

Download citation

Publish with us

Policies and ethics