Skip to main content

A Negative-Binomial Index Considering Dispersion and Zero Probability

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 294))

Abstract

We develop the so-called NB index,  which can distinguish the negative binomial from other distributions for overdispersion and zero inflation like Consuls’s generalized Poisson distribution. Although we concentrate on the i.i.d. case, it is also pointed out how to extend the results to time series models. After deriving the asymptotic distribution of the NB index, we investigate the finite-sample performance with simulations. We conclude with a real-data application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Consul, P.C.: Generalized Poisson Distributions Properties and Applications. Marcel Dekker, New York, Basel (1989)

    MATH  Google Scholar 

  2. Ibragimov, I.: Some limit theorems for stationary processes. Theory Probab. Appl. 7(4), 349–382 (1962)

    Article  MathSciNet  Google Scholar 

  3. Joe, H., Zhu, R.: Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biom. J. 47(2), 219–229 (2005)

    Article  MathSciNet  Google Scholar 

  4. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions, 3rd edn. Wiley, Hoboken, NJ (2005)

    Google Scholar 

  5. Shmueli, G., Minka, T.P., Kadane, J.B., Borle, S., Boatwright, P.: A useful distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution. Appl. Stat. 54(1), 127–142 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Weiß, C.H., Homburg, A., Puig, P.: Testing for zero inflation and overdispersion in INAR(1) models. Stat. Pap. (2016). https://doi.org/10.1007/s00362-016-0851-y

    Article  MATH  Google Scholar 

  7. Weiß, C.H.: An Introduction to Discrete-Valued Time Series. Wiley, Chichester (2018)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Dr. C.H. Weiß for useful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Aleksandrov .

Editor information

Editors and Affiliations

Appendices

7 Proof of Theorem 1

We state here the proof of Theorem 1.We use the same notation and the method for deriving the asymptotics as in the paper [6]. We start with a central limit theorem (CLT) for \(i.\,i.\,d.\) random variables \(Y_{1,r},\ldots ,Y_{T,r}\) with \(r=0,1,2\), which are defined by

$$\begin{aligned} \varvec{Y}_t\ :=\ \left( \begin{array}{c} Y_{t,0}\\ Y_{t,1}\\ Y_{t,2}\\ \end{array}\right) \ :=\ \left( \begin{array}{c} \mathbbm {1}_{\{X_t=0\}} - p_0\\ X_t - \mu \\ X_t^2 - \sigma ^2-\mu ^2\\ \end{array}\right) \end{aligned}$$
(6)

with mean \(\mu \), variance \(\sigma ^2\) and zero probability \(p_0\) . Since \(X_1,\ldots , X_T\) denotes an \(i.\,i.\,d.\) sample of random variables with the NB distribution, it holds that

$$ \begin{array}{l} \frac{1}{\sqrt{T}} \sum _{t=1}^T \varvec{Y}_t {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} {N }\left( \mathbf {0}, \varvec{\Sigma }\right) \qquad \text {with } \varvec{\Sigma }= \left( \sigma _{ij} \right) \text { given by } \sigma _{ij}\ =\ E\big [ Y_{0,i} Y_{0,j} \big ]. \end{array} $$

We can derive the asymptotic distribution of the statistic \(\hat{I}_{NB }\) from (3) with the help of the delta method in the next step after we calculated the matrix \(\varvec{\Sigma }\). So we need to calculate the entries \(\sigma _{ij}\) with \(0\le i\le j\le 2\) from the covariance matrix \(\varvec{\Sigma }\).

$$\begin{aligned}&\sigma _{0,0} =\textstyle E\left[ (\mathbbm {1}_{\{X_t=0\}}-p_0)^2\right] = E[\mathbbm {1}_{\{X_{t}=0\}}]-p_0^2=p_0(1-p_0)=p^n(1-p^n),\\&\sigma _{1,1} =\textstyle E[(X_t-\mu )^2]=\frac{n(1-p)}{p^2},\\&\sigma _{2,2}=E\big [\big (X_t^2-\sigma ^2-\mu ^2\big )^2\big ]=E[X_t^4]-(\sigma ^2+\mu ^2)^2\\&=\frac{n (1-p) \{n^3 (1-p)^3+6 n^2 (1-p)^2+n \left( 4 p^2-15 p+11\right) +p^2-6 p+6\}}{p^4}\\&-\left[ \frac{n (1-p) \{n (1-p)+1\}}{p^2}\right] ^2\\&=\frac{n (1-p) \{4 n^2 (1-p)^2+2 n (5-2p)(1-p)+p^2-6 p+6\}}{p^4}, \end{aligned}$$

where we used the moment generating function.

$$\begin{aligned}&\sigma _{1,2}= E\big [(X_t-\mu )\big (X_t^2-\sigma ^2-\mu ^2\big )\big ]=E[X_t^3]-(\sigma ^2+\mu ^2)\mu \\&=\frac{n (1-p) \{n^2 (1-p)^2+3 n (1-p)-p+2\}}{p^3}-\frac{n (1-p) \{n (1-p)+1\}}{p^2}\cdot \frac{n(1-p)}{p}\\&=\frac{n (1-p) \{2 n (1-p)-p+2\}}{p^3}, \end{aligned}$$

where we used the moment generating function.

$$\begin{aligned} \sigma _{0,1}= & {} E\left[ (\mathbbm {1}_{\{X_t=0\}}-p_0)(X_t-\mu )\right] =\underbrace{E[\mathbbm {1}_{\{X_t=0\}}X_t]}_{=0}-p_0\mu =-\frac{p^nn(1-p)}{p}. \end{aligned}$$

Analogously,

$$\begin{aligned}&\sigma _{0,2}=E\left[ (\mathbbm {1}_{\{X_t=0\}}-p_0)(X_t^2-\sigma ^2-\mu ^2)\right] \\&=E[\mathbbm {1}_{\{X_t=0\}}X_t^2]-p_0(\sigma ^2+\mu ^2) =-\frac{p^n \cdot n (1-p) \{n (1-p)+1\}}{p^2}. \end{aligned}$$

After having computed the required \(\sigma _{ij}\), we compute the asymptotic distribution of \(\hat{I}_{NB }\). For this purpose, let us define the function \(g: \mathbb {R}^3\rightarrow \mathbb {R}\) by

$$\begin{aligned} g(y_0,y_1,y_2)\ :=\ \frac{\left( \frac{y_1}{y_2-y_1^2}\right) ^\frac{y_1^2}{y_2-y_1^2-y_1}}{y_0},\qquad \end{aligned}$$
(7)

since \(g\big (p_0,\mu ,\sigma ^2+\mu ^2\big )=1\). First, we need to compute the gradient \( \nabla \varvec{g} (y_0,y_1,y_2)\),

figure b

Next, we evaluate the gradient in \((p^n,\ \frac{n(1-p)}{p}, \frac{n (1-p) \{-n (1-p)-1\}}{p^2})\) and obtain as

$$ \mathbf D =\left( \begin{array}{ccc} -p^{-n},\,\frac{p [(1-p) \{2 n (1-p)+1\}+\{2 n (1-p)+2-p\} \log (p)]}{(1-p)^2},\,\frac{p^2 (p-\log (p)-1)}{(1-p)^2} \end{array} \right) ^\top . $$

The application of the Delta method implies that, asymptotically, \(\hat{I}_{NB }\) is normally distributed with variance given as

$$ p^{-n}+\frac{2 n (n+1) \log (p) \left\{ (1-p)(3-p)+\log (p)\right\} }{(p-1)^2}+n \{2 n (2-p)+3-p\}-1. $$

This concludes the proof of Theorem 1.

Remark 1

Note that we can extend our results to count time series models like INAR(1), INARCH(1) or INMA(1), see [7] for further description of these models. In these cases, in analogy to [6], we can apply the CLT by [2] to \(\frac{1}{\sqrt{T}} \sum _{t=1}^T \varvec{Y}_t\), provided that moments of order \(>4\) exist, i.e.,

$$ \begin{array}{l} \frac{1}{\sqrt{T}} \sum _{t=1}^T \varvec{Y}_t {\mathop {\longrightarrow }\limits ^{\mathcal {D}}} {N }\left( \mathbf {0}, \varvec{\Sigma }\right) \qquad \text {with } \varvec{\Sigma }= \left( \sigma _{ij} \right) \text { given by}\\[3mm] \sigma _{ij}\ =\ E\big [ Y_{0,i} Y_{0,j} \big ] + \sum _{r=1}^\infty \Big (E\big [Y_{0,i} Y_{r,j}\big ] + E\big [ Y_{r,i} Y_{0,j}\big ] \Big ) \end{array} $$

and proceed analogously as we did in Sect. 7.

8 Proof for Theorem 2 (GPD)

We use the same procedure as in Sect. 7.

\(X_1,\ldots , X_T\) denotes an \(i.\,i.\,d.\) sample of random variables with GPD. We can derive the asymptotic distribution of the statistic \(\hat{I}_{NB }\) with the help of the delta method in the next step after we calculated the matrix \(\varvec{\Sigma }\).

$$\begin{aligned}&\sigma _{0,0} = \textstyle E\left[ (\mathbbm {1}_{\{X_t=0\}}-p_0)^2\right] =E[\mathbbm {1}_{\{X_{t}=0\}}]-p_0^2=p_0(1-p_0)=e^{-\theta }(1-e^{-\theta }),\\&\sigma _{1,1} = E[(X_t-\mu )^2]=\frac{\theta }{(1-\lambda )^3},\\&\sigma _{2,2}=E\big [\big (X_t^2-\sigma ^2-\mu ^2\big )^2\big ]=E[X_t^4]-(\sigma ^2+\mu ^2)^2\\&=\frac{\theta ^4}{(1-\lambda )^4}+\frac{6 \theta ^3}{(1-\lambda )^5}+\frac{\theta \left\{ \theta \left( -8 \lambda ^2+\lambda +7\right) +6 \lambda ^2+8 \lambda +1\right\} }{(1-\lambda )^7}\\&-\frac{\theta ^2 (\theta \lambda -\theta -1)^2}{(1-\lambda )^6}=\frac{\theta \left\{ 4 \theta ^2 (\lambda -1)^2+\theta \left( -8 \lambda ^2+2 \lambda +6\right) +6 \lambda ^2+8 \lambda +1\right\} }{(1-\lambda )^7}, \end{aligned}$$

where we used the moment generating function.

$$\begin{aligned}&\sigma _{1,2}= E\big [(X_t-\mu )\big (X_t^2-\sigma ^2-\mu ^2\big )\big ]=E[X_t^3]-(\sigma ^2+\mu ^2)\mu \\&=\frac{\theta \left\{ \theta ^2 (\lambda -1)^2-3 \theta (\lambda -1)+2 \lambda +1\right\} }{(1-\lambda )^5}-\frac{\theta ^2 (1+\theta -\theta \lambda )}{(1-\lambda )^4}\\&=\frac{\theta \{1+2 \theta (1-\lambda )+2 \lambda \}}{(1-\lambda )^5}, \end{aligned}$$

where we used the moment generating function.

$$\begin{aligned} \sigma _{0,1}= & {} E\left[ (\mathbbm {1}_{\{X_t=0\}}-p_0)(X_t-\mu )\right] = \underbrace{E[\mathbbm {1}_{\{X_t=0\}}X_t]}_{=0}-p_0\mu =-\frac{e^{-\theta }\theta }{1-\lambda }. \end{aligned}$$

Analogously,

$$\begin{aligned}&\sigma _{0,2}=E\left[ (\mathbbm {1}_{\{X_t=0\}}-p_0)(X_t^2-\sigma ^2-\mu ^2)\right] \\&=E[\mathbbm {1}_{\{X_t=0\}}X_t^2]-p_0(\sigma ^2+\mu ^2) =\frac{e^{-\theta } \theta (\theta \lambda -\theta -1)}{(1-\lambda )^3}. \end{aligned}$$

After having computed the required \(\sigma _{ij}\), we compute the asymptotic distribution of \(\hat{I}_{NB }\) under the alternative hypothesis. We use the same function g as in Eq. (7), so the gradient remains the same. Next, we obtain as

$$ \varvec{D}=\left( \begin{array}{ccc} -e^{2 \theta } (1-\lambda )^{\frac{2\theta (1-\lambda )}{\lambda (2-\lambda )}}\\ \frac{e^{\theta } (1-\lambda )^{\frac{2\theta (1-\lambda )}{\lambda (2-\lambda )}+2} \big [ \{2 \theta (1-\lambda )-\lambda ^2+2 \lambda +1\} \log \left( (1-\lambda )^2\right) +(\lambda -2) \lambda \{-2 \theta (1-\lambda )-1\}\big ]}{(\lambda -2)^2 \lambda ^2}\\ \frac{e^{\theta } (1-\lambda )^4 (1-\lambda )^{\frac{2\theta (1-\lambda )}{\lambda (2-\lambda )}} \{(\lambda -2) \lambda -\log \left( (1-\lambda )^2\right) \}}{(\lambda -2)^2 \lambda ^2} \end{array} \right) . $$

The application of the Delta method implies that, asymptotically, \(\hat{I}_{NB }\) under the alternative hypothesis is normally distributed with variance given as

figure c

This concludes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aleksandrov, B. (2019). A Negative-Binomial Index Considering Dispersion and Zero Probability. In: Steland, A., Rafajłowicz, E., Okhrin, O. (eds) Stochastic Models, Statistics and Their Applications. SMSA 2019. Springer Proceedings in Mathematics & Statistics, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-28665-1_19

Download citation

Publish with us

Policies and ethics