Skip to main content

Confidence-Rich Grid Mapping

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Occupancy grids are a common framework in robotics for creating a spatial map of the environment. Traditional grid mapping algorithms assume that map voxel occupancies are independent of each other. In addition, they use a map representation where each voxel stores a single number representing the occupancy probability. This leads to inconsistencies in the map and, more importantly, conflicts between the map error and the reported confidence values, resulting in critical cases of overconfidence. Such discrepancies pose challenges for planners that rely on the generated map for collision avoidance. This paper studies occupancy grids from a planning perspective and proposes a novel algorithm for grid mapping in the presence of noisy measurements. By storing richer data at each voxel, the new grid representation enables an accurate estimate of the variance of occupancy. We show that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, in these definitions the variable b refers to the set of parameters that characterize the probability distributions. So, we will treat b as a vector (deterministic or random depending on the context) in the rest of the paper.

References

  1. Agha-mohammadi, A., Heiden, E., Hausman, K., Sukhatme, G.: Confidence-rich grid mapping: Extended version. Technical Report, http://people.lids.mit.edu/aliagha/Web/pubpdfs/CRM.pdf (2017)

  2. Elfes, A.: Occupancy grids: a probabilistic framework for robot perception and navigation. Ph.D thesis, Carnegie Mellon University (1989)

    Google Scholar 

  3. Hähnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic environments. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1557–1563. IEEE (2003)

    Google Scholar 

  4. Howard, A., Kitchen, L.: Generating sonar maps in highly specular environments. In: Proceedings of the Fourth International Conference on Control Automation Robotics and Vision (1996)

    Google Scholar 

  5. Kay, S.M.: Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall (1993)

    Google Scholar 

  6. Kim, Soohwan, Kim, Jonghyuk: Occupancy mapping and surface reconstruction using local gaussian processes with kinect sensors. IEEE Trans. Cybernetics. 43(5), 1335–1346 (2013)

    Article  Google Scholar 

  7. Kim, S., Kim, J. et al.: Recursive bayesian updates for occupancy mapping and surface reconstruction. In: Proceedings of the Australasian Conference on Robotics and Automation (2014)

    Google Scholar 

  8. Konolige, Kurt: Improved occupancy grids for map building. Auton. Robots 4(4), 351–367 (1997)

    Article  Google Scholar 

  9. Konolige, K., Agrawal, M., Bolles, R.C., Cowan, C., Fischler, M., Gerkey, B.: Outdoor mapping and navigation using stereo vision. In: Experimental Robotics, pp. 179–190. Springer (2008)

    Google Scholar 

  10. Paskin, M., Thrun, S.: Robotic mapping with polygonal random fields. In: Conference on Uncertainty in Artificial Intelligence, pp. 450–458 (2005)

    Google Scholar 

  11. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61 (1988)

    Google Scholar 

  12. Moravec, H.P.: Robot spatial perception by stereoscopic vision and 3D evidence grids. In: Technical Report CMU-RI-TR-96-34, Carnegie Mellon University (1996)

    Google Scholar 

  13. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)

    Google Scholar 

  14. OCallaghan, S., Ramos, F.T., and Durrant-Whyte, H.: Contextual occupancy maps using Gaussian processes. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 1054–1060 (2009)

    Google Scholar 

  15. OCallaghan, S.T., Ramos, F.T.: Gaussian process occupancy maps. Int. J. Robot. Res. 31(1), 42–62 (2012)

    Google Scholar 

  16. Pagac, D., Nebot, E.M., Durrant-Whyte, H.: An evidential approach to probabilistic map-building. In: Reasoning with Uncertainty in Robotics, pp. 164–170. Springer (1996)

    Google Scholar 

  17. Ramos, Fabio, Ott, Lionel: Hilbert maps: scalable continuous occupancy mapping with stochastic gradient descent. Int. J. Robot. Res. 35(14), 1717–1730 (2016)

    Article  Google Scholar 

  18. Stachniss, C.: Robotic Mapping and Exploration, vol. 55. Springer (2009)

    Google Scholar 

  19. Thrun, Sebastian: Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998)

    Article  Google Scholar 

  20. Thrun, Sebastian: Learning occupancy grid maps with forward sensor models. Auton. Robots 15(2), 111–127 (2003)

    Article  Google Scholar 

  21. Thrun, Sebastian, Burgard, Wolfram, Fox, Dieter: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  22. Thrun, Sebastian, et al.: Robotic mapping: a survey. Explor. Artif. Intell. New Millenn. 1, 1–35 (2002)

    Google Scholar 

  23. Veeck, Michael, Burgard, Wolfram: Learning polyline maps from range scan data acquired with mobile robots. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2, 1065–1070 (2004)

    Google Scholar 

  24. Wang, J., Englot, B.: Fast, accurate Gaussian process occupancy maps via test-data octrees and nested bayesian fusion. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1003–1010 (2016)

    Google Scholar 

  25. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: a probabilistic, flexible, and compact 3d map representation for robotic systems. In: ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, vol. 2 (2010)

    Google Scholar 

  26. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali-akbar Agha-mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agha-mohammadi, Aa., Heiden, E., Hausman, K., Sukhatme, G. (2020). Confidence-Rich Grid Mapping. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_45

Download citation

Publish with us

Policies and ethics