Skip to main content

Fundamental Limitations in Performance and Interpretability of Common Planar Rigid-Body Contact Models

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

The ability to reason about and predict the outcome of contacts is paramount to the successful execution of many robot tasks. Analytical rigid-body contact models are used extensively in planning and control due to their computational efficiency and simplicity, yet despite their prevalence, little if any empirical comparison of these models has been made and it is unclear how well they approximate contact outcomes. In this paper, we first formulate a system identification approach for six commonly used contact models in the literature, and use the proposed method to find parameters for an experimental data-set of impacts. Next, we compare the models empirically, and establish a task specific upper bound on the performance of the models and the rigid-body contact model paradigm. We highlight the limitations of these models, salient failure modes, and the care that should be taken in parameter selection, which are ultimately difficult to give a physical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chatterjee, A., Ruina, A.: A new algebraic rigid body collision law based on impulse space considerations. ASME J. Appl. Mech. 65(4), 939–951 (1998)

    Article  Google Scholar 

  3. Chavan Dafle, N., Rodriguez, A .: Prehensile pushing: in-hand manipulation with push-primitives. In: IEEE/RSJ International Conference on Intelligent Robots Systems (IROS), pp. 6215 – 6222 (2015)

    Google Scholar 

  4. Drumwright, E., Shell, D.A.: Modeling contact friction and joint friction in dynamic robotic simulation using the principle of maximum dissipation. In: Proceedings of Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 249–266. Springer, Berlin (2010)

    Google Scholar 

  5. Fazeli, N., Tedrake, R., Rodriguez, A.: Identifiability analysis of planart rigid-body frictional contact. In: International Symposium Robotics Research (ISRR), pp. 665–682. Springer, Cham (2016)

    Google Scholar 

  6. Fazeli, N., Donlon, E., Drumwright, E., Rodriguez, A.: Empirical evaluation of common contact models for planar impact. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3418–3425 (2017)

    Google Scholar 

  7. Fazeli, N., Kolbert, R., Tedrake, R., Rodriguez, A.: Parameter and contact force estimation of planar rigid-bodies undergoing frictional contact. Int. J. Robot. Res. 36(13–14), 1437–1454 (2017)

    Google Scholar 

  8. Fazeli, N., Zapolsky, S., Drumwright, E., Rodriguez, A.: Learning data-efficient rigid-body contact models: case study of planar impact (2017). arXiv:171005947

  9. Gautier, M., Khalil, W.: On the identification of the inertial parameters of robots. In: IEEE Conference on Decision and Control, pp 2264–2269. Austin (1988)

    Google Scholar 

  10. Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  11. Hogan, F., Rodriguez, A.: Feedback control of the pusher-slider system: a story of hybrid and underactuated contact dynamics. In: Proceedings of the Workshop on Algorithmic Foundation Robotics (WAFR). San Francisco (2016)

    Google Scholar 

  12. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  13. Khosla, P., Kanade, T.: Parameter identification of robot dynamics. In: IEEE Conference on Decision and Control, pp. 1754–1760 (1985)

    Google Scholar 

  14. Koval, M., Pollard, N., Srinivasa, S.: Pose estimation for planar contact manipulation with manifold particle filters. Int. J. Robot. Res. 7(34), 922–945 (2015)

    Article  Google Scholar 

  15. Kraus, P.R., Kumar, V.: Compliant contact models for rigid body collisions. In: Proceedings of International Conference on Robotics and Automation, vol. 2, pp. 1382–1387 (1997)

    Google Scholar 

  16. Lacoursiére, C.: Ghosts and machines: regularized variational methods for interactive simulations of multibodies with dry frictional contacts. Ph.D. thesis, Umeå University, Umeå (2007)

    Google Scholar 

  17. Lankarani, H., Nikravesh, P.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Design 112(3), 369–376 (1990)

    Article  Google Scholar 

  18. Li, Z., Kota, S.: Virtual prototyping and motion simulation with adams. J. Comput. Inf. Sci. Eng. 1(3), 276–279 (2001)

    Article  Google Scholar 

  19. Marhefka, D.W., Orin, D.E.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybern. 29(6), 566–572 (1999)

    Article  Google Scholar 

  20. Mirtich, B.: Impulse-based dynamic simulation of rigid body systems. Ph.D. thesis, University of California, Berkeley (1996)

    Google Scholar 

  21. Nubiola, A., Bonev, I.A.: Absolute calibration of an abb irb 1600 robot using a laser tracker. Robot. Comput. Integr. Manuf. 29(1), 236–245 (2013)

    Article  Google Scholar 

  22. Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2013)

    Article  Google Scholar 

  23. Shapiro, A., Faloutsos, P., Ng-Thow-Hing, V.: Dynamic animation and control environment. In: Proceedings of Graphics Interface 2005, Canadian Human-Computer Communications Society, pp. 61–70 (2005)

    Google Scholar 

  24. Slotine, J.J.E.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  25. Song, P., Kraus, P., Kumar, V., Dupont, P.: Analysis of rigid body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech. 68 (2000)

    Google Scholar 

  26. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM 42, 3–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Eng. 39(15), 2673–2691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stronge, W.J.: Rigid body collisions with friction. Proc. R. Soc. Lond. A 431, 169–181 (1990)

    Google Scholar 

  29. Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. ASME J. Appl. Mech. 59, 635–642 (1992)

    Article  MATH  Google Scholar 

  30. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn. Dover, Mineola (1944)

    Google Scholar 

  31. Yu, K.T., Bauza. M., Fazeli. N., Rodriguez, A.: More than a million ways to be pushed. a high-fidelity experimental data set of planar pushing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Fazeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fazeli, N., Zapolsky, S., Drumwright, E., Rodriguez, A. (2020). Fundamental Limitations in Performance and Interpretability of Common Planar Rigid-Body Contact Models. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_41

Download citation

Publish with us

Policies and ethics