Skip to main content

Control of Quadrotors Using the Hopf Fibration on SO(3)

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

Geometric, coordinate-free approaches are widely used to control quadrotors on the special Euclidean group (SE(3)). These approaches rely on the construction of an element of the special orthogonal group (SO(3)) from a desired thrust vector direction which lies on a sphere (\(S^2\)) and a desired yaw angle which lies on a circle (\(S^1\)). The Hairy Ball Theorem can be applied to show that any construction of this type has to be discontinuous or degenerate somewhere. We propose a new geometric control algorithm based on the Hopf fibration, which allows us to place the point of discontinuity as far away from the hover configuration as possible and further than existing approaches. We then use multiple maps from \(S^2\times S^1\) to SO(3) to be able to control the quadrotor through any position and orientation. The proposed Hopf Fibration Control Algorithm (HFCA) is compared to existing geometric control algorithms in experiments and simulation. The HFCA employs multiple charts to allow the quadrotor to execute arbitrary dynamically feasible trajectories on SE(3), including those through configurations in which the vehicle is inverted.

Michael Watterson is supported with a NASA space technology research fellowship. Infrastructure was supported by grants HR001151626/HR0011516850, W911NF-08-2-0004, and N00014-17-1-2437.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achtelik, M.W., Lynen, S., Chli, M., Siegwart, R.: Inversion based direct position control and trajectory following for micro aerial vehicles. In: IROS, IEEE (2013)

    Google Scholar 

  2. Gallier, J., Quaintance, J.: Notes on Differential Geometry and Lie Groups. Springer, Berlin (2017)

    Google Scholar 

  3. Geisert, M., Mansard, N.: Trajectory generation for quadrotor based systems using numerical optimal control. In ICRA, IEEE (2016)

    Google Scholar 

  4. Gillula, J.H., Huang, H., Vitus, M.P., Tomlin, C.J.: Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice. In ICRA, IEEE (2010)

    Google Scholar 

  5. Grafarend, E.W., Khnel, W.: A minimal atlas for the rotation group SO (3). GEM-Int. J. Geomath. (2011)

    Google Scholar 

  6. Hehn, M., D’Andrea, R.: Real-Time Trajectory Generation for Quadrocopters. IEEE Trans. Robot. (2015)

    Google Scholar 

  7. How, J., Behihke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test environment. IEEE Control. Syst. Mag. (2008)

    Google Scholar 

  8. Lee, T., Leoky, M., McClamroch, N.: Geometric tracking control of a quadrotor UAV on SE(3). In: CDC (2010)

    Google Scholar 

  9. Lupashin, S., D’Andrea, R.: Adaptive fast open-loop maneuvers for quadrocopters. Auton Robot. (2012)

    Google Scholar 

  10. Lupashin, S., Hehn, M., Mueller, M.W., Schoellig, A.P., Sherback, M., DAndrea, R.: A platform for aerial robotics research and demonstration: the flying machine arena. Mechatronics (2014)

    Google Scholar 

  11. Lupashin, S., Schllig, A., Sherback, M., D’Andrea, R.: A simple learning strategy for high-speed quadrocopter multi-flips. In: ICRA, IEEE (2010)

    Google Scholar 

  12. Lyons, D.W.: An elementary introduction to the hopf fibration. Math. Mag. (2003)

    Google Scholar 

  13. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In: ICRA, IEEE (2015)

    Google Scholar 

  14. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: ICRA, IEEE (2011)

    Google Scholar 

  15. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. IJRR (2012)

    Google Scholar 

  16. Milnor, J.: Analytic proofs of the “Hairy Ball Theorem” and the brouwer fixed point theorem. Am. Math. Mon. (1978)

    Google Scholar 

  17. Neunert, M., de Crousaz, C., Furrer, F., Kamel, M., Farshidian, F., Siegwart, R., Buchli, J.: Fast nonlinear model predictive control for unified trajectory optimization and tracking. In: ICRA, IEEE (2016)

    Google Scholar 

  18. Schoellig, A.P., Wiltsche, C., D’Andrea, R.: Feed-forward parameter identification for precise periodic quadrocopter motions. In: ACC, IEEE (2012)

    Google Scholar 

  19. Schulz, M., Augugliaro, F., Ritz, R., D’Andrea, R.: High-speed, steady flight with a quadrocopter in a confined environment using a tether. In: IROS, IEEE (2015)

    Google Scholar 

  20. Sola, J.: Quaternion kinematics for the error-state KF. Technical Report, Laboratoire dAnalyse et dArchitecture des Systemes-Centre national de la recherche scientifique (LAAS-CNRS), Toulouse, France (2012)

    Google Scholar 

  21. Tang, S., Kumar, V.: Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload. In: ICRA, IEEE (2015)

    Google Scholar 

  22. Whitney, H.: Differentiable manifolds. Ann. Math. (1936)

    Google Scholar 

  23. Yershova, A., Jain, S., Lavalle, S.M., Mitchell, J.C.: Generating uniform incremental grids on SO (3) using the Hopf fibration. IJRR (2010)

    Google Scholar 

  24. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for autonomous aerial vehicles with mpc-guided policy search. In: ICRA, IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Watterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watterson, M., Kumar, V. (2020). Control of Quadrotors Using the Hopf Fibration on SO(3). In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_20

Download citation

Publish with us

Policies and ethics