Skip to main content

RGB-D Odometry and SLAM

  • Chapter
  • First Online:
RGB-D Image Analysis and Processing

Abstract

The emergence of modern RGB-D sensors had a significant impact in many application fields, including robotics, augmented reality (AR), and 3D scanning. They are low-cost, low-power, and low-size alternatives to traditional range sensors such as LiDAR. Moreover, unlike RGB cameras, RGB-D sensors provide the additional depth information that removes the need of frame-by-frame triangulation for 3D scene reconstruction. These merits have made them very popular in mobile robotics and AR, where it is of great interest to estimate ego-motion and 3D scene structure. Such spatial understanding can enable robots to navigate autonomously without collisions and allow users to insert virtual entities consistent with the image stream. In this chapter, we review common formulations of odometry and Simultaneous Localization and Mapping (known by its acronym SLAM) using RGB-D stream input. The two topics are closely related, as the former aims to track the incremental camera motion with respect to a local map of the scene, and the latter to jointly estimate the camera trajectory and the global map with consistency. In both cases, the standard approaches minimize a cost function using nonlinear optimization techniques. This chapter consists of three main parts: In the first part, we introduce the basic concept of odometry and SLAM and motivate the use of RGB-D sensors. We also give mathematical preliminaries relevant to most odometry and SLAM algorithms. In the second part, we detail the three main components of SLAM systems: camera pose tracking, scene mapping, and loop closing. For each component, we describe different approaches proposed in the literature. In the final part, we provide a brief discussion on advanced research topics with the references to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ataer-Cansizoglu E, Taguchi Y, Ramalingam S (2016) Pinpoint SLAM: a hybrid of 2D and 3D simultaneous localization and mapping for RGB-D sensors. In: 2016 IEEE international conference on robotics and automation (ICRA), pp 1300–1307

    Google Scholar 

  2. Ataer-Cansizoglu E, Taguchi Y, Ramalingam S, Garaas T (2013) Tracking an RGB-D camera using points and planes. In: 2013 IEEE international conference on computer vision workshops, pp 51–58 (2013)

    Google Scholar 

  3. Babu BW, Kim S, Yan Z, Ren L (2016) \(\sigma \)-DVO: sensor noise model meets dense visual odometry. In: 2016 IEEE international symposium on mixed and augmented reality (ISMAR), pp 18–26

    Google Scholar 

  4. Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM): part II. IEEE Robot Autom Mag 13(3):108–117

    Article  Google Scholar 

  5. Barfoot TD (2017) State estimation for robotics. Cambridge University Press

    Google Scholar 

  6. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Proceedings of the European conference on computer vision (ECCV), pp 404–417

    Chapter  Google Scholar 

  7. Bescós B, Fácil JM, Civera J, Neira J (2018) DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot Autom Lett 3(4):4076–4083

    Article  Google Scholar 

  8. Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Sensor fusion IV: control paradigms and data structures, vol 1611. International Society for Optics and Photonics, pp 586–607

    Google Scholar 

  9. Bloesch M, Czarnowski J, Clark R, Leutenegger S, Davison AJ (2018) CodeSLAM—learning a compact, optimisable representation for dense visual SLAM. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2560–2568

    Google Scholar 

  10. Bose L, Richards A (2016) Fast depth edge detection and edge based RGB-D SLAM. In: 2016 IEEE international conference on robotics and automation (ICRA), pp 1323–1330

    Google Scholar 

  11. Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present, and future of simultaneous localization and mapping: towards the robust-perception age. IEEE Trans Robot 32(6):1309–1332

    Article  Google Scholar 

  12. Castellanos JA, Montiel J, Neira J, Tardós JD (1999) The SPmap: a probabilistic framework for simultaneous localization and map building. IEEE Trans Robot Autom 15(5):948–952

    Article  Google Scholar 

  13. Cavallari T, Golodetz S, Lord NA, Valentin J, Di Stefano L, Torr PH (2017) On-the-Fly adaptation of regression forests for online camera relocalisation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4457–4466

    Google Scholar 

  14. Chang A, Dai A, Funkhouser T, Halber, M, Niessner M, Savva M, Song S, Zeng A, Zhang Y (2017) Matterport3D: learning from RGB-D data in indoor environments. In: International conference on 3D vision (3DV)

    Google Scholar 

  15. Choi C, Trevor AJB, Christensen HI (2013) RGB-D edge detection and edge-based registration. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 1568–1575

    Google Scholar 

  16. Concha A, Civera J (2017) RGBDTAM: a cost-effective and accurate RGB-D tracking and mapping system. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE , pp 6756–6763

    Google Scholar 

  17. Concha A, Hussain MW, Montano L, Civera J (2014) Manhattan and piecewise-planar constraints for dense monocular mapping. In: Robotics: science and systems (2014)

    Google Scholar 

  18. Concha A, Loianno G, Kumar V, Civera J (2016) Visual-inertial direct SLAM. In: 2016 IEEE international conference on robotics and automation (ICRA), pp 1331–1338. IEEE

    Google Scholar 

  19. Corke P (2017) Robotics, vision and control: fundamental algorithms in MATLAB® second, completely revised, chap 1. Springer, pp 15–41

    Google Scholar 

  20. Curless B, Levoy M (1996) A volumetric method for building complex models from range images. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, pp 303–312

    Google Scholar 

  21. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M (2017) ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of computer vision and pattern recognition (CVPR). IEEE (2017)

    Google Scholar 

  22. Dai A, Nießner M, Zollhöfer M, Izadi S, Theobalt C (2017) BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans Graph 36(3):24:1–24:18

    Article  Google Scholar 

  23. Damen D, Gee A, Mayol-Cuevas W, Calway A (2012) Egocentric real-time workspace monitoring using an RGB-D camera. In: 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1029–1036

    Google Scholar 

  24. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: efficient and robust 3D object recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 998–1005

    Google Scholar 

  25. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 13(2):99–110

    Article  Google Scholar 

  26. Endres F, Hess J, Engelhard N, Sturm J, Cremers D, Burgard W (2012) An evaluation of the RGB-D SLAM system. In: 2012 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1691–1696

    Google Scholar 

  27. Endres F, Hess J, Sturm J, Cremers D, Burgard W (2014) 3-D mapping with an RGB-D camera. IEEE Trans Robot 30(1):177–187

    Article  Google Scholar 

  28. Engel J, Koltun V, Cremers D (2018) Direct sparse odometry. IEEE Trans Pattern Anal Mach Intell 40(3):611–625

    Article  Google Scholar 

  29. Fácil, JM, Ummenhofer B, Zhou H, Montesano L, Brox T, Civera J (2019) CAM-Convs: camera-aware multi-scale convolutions for single-view depth. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  30. Gálvez-López D, Tardos JD (2012) Bags of binary words for fast place recognition in image sequences. IEEE Trans Robot 28(5):1188–1197

    Article  Google Scholar 

  31. Gao X, Zhang T (2015) Robust RGB-D simultaneous localization and mapping using planar point features. Robot Auton Syst 72:1–14

    Article  Google Scholar 

  32. Gee AP, Mayol-Cuevas WW (2012) 6D relocalisation for RGBD cameras using synthetic view regression. In: BMVC

    Google Scholar 

  33. Glocker B, Shotton J, Criminisi A, Izadi S (2015) Real-time RGB-D camera relocalization via randomized ferns for keyframe encoding. IEEE Trans Vis Comput Graph 21(5):571–583

    Article  Google Scholar 

  34. Gutierrez-Gomez D, Guerrero JJ (2018) RGBiD-SLAM for accurate real-time localisation and 3D mapping. arXiv:1807.08271

  35. Gutiérrez-Gómez D, Mayol-Cuevas W, Guerrero JJ (2015) Inverse depth for accurate photometric and geometric error minimisation in RGB-D dense visual odometry. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 83–89

    Google Scholar 

  36. Gutierrez-Gomez D, Mayol-Cuevas W, Guerrero JJ (2016) Dense RGB-D visual odometry using inverse depth. Robot Auton Syst 75:571–583

    Article  Google Scholar 

  37. Guzman-Rivera A, Kohli P, Glocker B, Shotton J, Sharp T, Fitzgibbon A, Izadi S (2014) Multi-output learning for camera relocalization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1114–1121

    Google Scholar 

  38. Handa A, Whelan T, McDonald J, Davison AJ (2014) A Benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1524–1531

    Google Scholar 

  39. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of fourth alvey vision conference, pp 147–151

    Google Scholar 

  40. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

    Google Scholar 

  41. Henry P, Krainin M, Herbst E, Ren X, Fox D (2010) RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: The 12th international symposium on experimental robotics (ISER). Citeseer

    Google Scholar 

  42. Hermans A, Floros G, Leibe B (2014) Dense 3D semantic mapping of indoor scenes from RGB-D images. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2631–2638

    Google Scholar 

  43. Houseago C, Bloesch M, Leutenegger S (2019) KO-Fusion: dense visual SLAM with tightly-coupled kinematic and odometric tracking. In: 2019 IEEE international conference on robotics and automation (ICRA). IEEE

    Google Scholar 

  44. Hsiao M, Westman E, Kaess M (2018) Dense planar-inertial SLAM with structural constraints. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 6521–6528

    Google Scholar 

  45. Hsiao M, Westman E, Zhang G, Kaess M (2017) Keyframe-Based dense planar SLAM. In: IEEE international conference on robotics and automation, ICRA

    Google Scholar 

  46. Huang AS, Bachrach A, Henry P, Krainin M, Maturana D, Fox D, Roy N (2011) Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International symposium of robotics research. Springer (2011)

    Google Scholar 

  47. Huber PJ (2011) Robust statistics. Springer

    Google Scholar 

  48. Engel J, Sturm J, Cremers D (2014) Scale-Aware navigation of a low-cost quadrocopter with a monocular camera. Robot Auton Syst (RAS) 62(11):1646–1656

    Article  Google Scholar 

  49. Jaimez M, Kerl C, Gonzalez-Jimenez J, Cremers D (2017) Fast odometry and scene flow from RGB-D cameras based on geometric clustering. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3992–3999

    Google Scholar 

  50. Kaess M (2015) Simultaneous localization and mapping with infinite planes. In: IEEE international conference on robotics and automation, pp 4605–4611 (2015)

    Google Scholar 

  51. Keller M, Lefloch D, Lambers M, Izadi S, Weyrich T, Kolb A (2013) Real-time 3D reconstruction in dynamic scenes using point-based fusion. In: 2013 international conference on 3D vision-3DV 2013. IEEE, pp 1–8

    Google Scholar 

  52. Kerl C, Stuckler J, Cremers D (2015) Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras. In: Proceedings of the IEEE international conference on computer vision, pp 2264–2272

    Google Scholar 

  53. Kerl C, Sturm J, Cremers D (2013) Dense visual SLAM for RGB-D cameras. In: Intelligent robots and systems (IROS). Citeseer, pp 2100–2106

    Google Scholar 

  54. Kerl C, Sturm J, Cremers D (2013) Robust odometry estimation for RGB-D cameras. In: 2013 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3748–3754

    Google Scholar 

  55. Kim C, Kim P, Lee S, Kim HJ (2018) Edge-Based robust RGB-D visual odometry using 2-D edge divergence minimization. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 6887–6894

    Google Scholar 

  56. Kim P, Coltin B, Kim HJ (2018) Linear RGB-D SLAM for planar environments. Comput Vis—ECCV 2018:350–366

    Google Scholar 

  57. Kim P, Coltin B, Kim HJ (2018) Low-drift visual odometry in structured environments by decoupling rotational and translational motion. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 7247–7253

    Google Scholar 

  58. Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM international symposium on mixed and augmented reality, 2007. ISMAR 2007. IEEE, pp 225–234

    Google Scholar 

  59. Klingensmith M, Dryanovski I, Srinivasa S, Xiao J (2015) Chisel: real time large scale 3D reconstruction onboard a mobile device using spatially hashed signed distance fields. In: Robotics: science and systems, vol 4 (2015)

    Google Scholar 

  60. Klingensmith M, Sirinivasa SS, Kaess M (2016) Articulated robot motion for simultaneous localization and mapping (ARM-SLAM). IEEE Robot Autom Lett 1(2):1156–1163

    Article  Google Scholar 

  61. Klose S, Heise P, Knoll A (2013) Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1100–1106

    Google Scholar 

  62. Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) g2o: a general framework for graph optimization. In: IEEE international conference on robotics and automation (ICRA), pp 3607–3613

    Google Scholar 

  63. Kuse M, Shaojie S (2016) Robust camera motion estimation using direct edge alignment and sub-gradient method. In: 2016 IEEE international conference on robotics and automation (ICRA), pp 573–579

    Google Scholar 

  64. Laidlow T, Bloesch M, Li W, Leutenegger S (2017) Dense RGB-D-Inertial SLAM with map deformations. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 6741–6748

    Google Scholar 

  65. Le P, Košecka J (2017) Dense piecewise planar RGB-D SLAM for indoor environments. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4944–4949

    Google Scholar 

  66. Lee SH, de Croon G (2018) Stability-based scale estimation for monocular SLAM. IEEE Robot Autom Lett 3(2):780–787

    Article  Google Scholar 

  67. Li W, Saeedi S, McCormac J, Clark R, Tzoumanikas D, Ye Q, Huang Y, Tang R, Leutenegger S (2018) InteriorNet: mega-scale multi-sensor photo-realistic indoor scenes dataset. In: British machine vision conference (BMVC)

    Google Scholar 

  68. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  69. Lu Y, Song D (2015) Robust RGB-D odometry using point and line features. In: 2015 IEEE international conference on computer vision (ICCV), pp 3934–3942

    Google Scholar 

  70. Lu Y, Song D (2015) Robustness to lighting variations: an RGB-D indoor visual odometry using line segments. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 688–694

    Google Scholar 

  71. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference on artificial intelligence, vol 2, pp 674–679

    Google Scholar 

  72. Ma L, Kerl C, Stückler J, Cremers D (2016) CPA-SLAM: consistent plane-model alignment for direct RGB-D SLAM. In: IEEE international conference on robotics and automation (ICRA), pp 1285–1291

    Google Scholar 

  73. Ma L, Stückler J, Kerl C, Cremers D (2017) Multi-view deep learning for consistent semantic mapping with RGB-D cameras. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 598–605

    Google Scholar 

  74. Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear least squares problems, 2nd edn, p 60

    Google Scholar 

  75. McCormac J, Handa A, Davison A, Leutenegger S (2017) SemanticFusion: dense 3D semantic mapping with convolutional neural networks. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4628–4635

    Google Scholar 

  76. Meilland M, Comport AI (2013) On unifying key-frame and voxel-based dense visual SLAM at large scales. In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 3677–3683

    Google Scholar 

  77. Meilland M, Comport AI (2003) Super-Resolution 3D tracking and mapping. In: 2013 IEEE international conference on robotics and automation. IEEE, pp 5717–5723

    Google Scholar 

  78. Mur-Artal R, Montiel JMM, Tardós JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  79. Mur-Artal R, Tardós JD (2017) ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans Robot 33(5):1255–1262

    Article  Google Scholar 

  80. Newcombe RA, Fox D, Seitz SM (2015) DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 343–352

    Google Scholar 

  81. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohi P, Shotton J, Hodges S, Fitzgibbon A (2011) KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE international symposium on mixed and augmented reality (ISMAR). IEEE, pp 127–136

    Google Scholar 

  82. Pham TT, Reid I, Latif Y, Gould S (2015) Hierarchical higher-order regression forest fields: an application to 3D indoor scene labelling. In: Proceedings of the IEEE international conference on computer vision, pp 2246–2254

    Google Scholar 

  83. Pire T, Fischer T, Castro G, De Cristóforis P, Civera J, Berlles JJ (2017) S-PTAM: stereo parallel tracking and mapping. Robot Auton Syst 93:27–42

    Article  Google Scholar 

  84. Platinsky L, Davison AJ, Leutenegger S (2017) Monocular visual odometry: sparse joint optimisation or dense alternation? In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5126–5133

    Google Scholar 

  85. Proença PF, Gao Y (2018) Probabilistic RGB-D odometry based on points, lines and planes under depth uncertainty. Robot Auton Syst 104:25–39

    Article  Google Scholar 

  86. Raposo C, Lourenço M, Antunes M, Barreto JP (2013) Plane-based odometry using an RGB-D camera. In: British machine vision conference (BMVC)

    Google Scholar 

  87. Rosen DM, Carlone L, Bandeira AS, Leonard JJ (2019) SE-Sync: a certifiably correct algorithm for synchronization over the special euclidean group. I J Robot Res 38(2–3)

    Article  Google Scholar 

  88. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: European conference on computer vision. Springer, pp 430–443

    Google Scholar 

  89. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE international conference on computer vision, pp 2564–2571

    Google Scholar 

  90. Rünz M, Buffier M, Agapito L (2018) MaskFusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: 2018 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE, pp 10–20

    Google Scholar 

  91. Salas-Moreno RF, Glocker B, Kelly PHJ, Davison AJ (2014) Dense planar SLAM. In: IEEE international symposium on mixed and augmented reality, ISMAR, pp 157–164

    Google Scholar 

  92. Salas-Moreno RF, Newcombe RA, Strasdat H, Kelly PH, Davison AJ (2013) SLAM++: simultaneous localisation and mapping at the level of objects. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1352–1359

    Google Scholar 

  93. Schenk F, Fraundorfer F (2017) Combining edge images and depth maps for robust visual odometry. In: British machine vision conference

    Google Scholar 

  94. Schops T, Sattler T, Pollefeys M (2019) BAD SLAM: bundle adjusted direct RGB-D SLAM. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 134–144

    Google Scholar 

  95. Scona R, Jaimez M, Petillot YR, Fallon M, Cremers D (2018) StaticFusion: background reconstruction for dense RGB-D SLAM in dynamic environments. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1–9

    Google Scholar 

  96. Scona R, Nobili S, Petillot YR, Fallon M (2017) Direct visual SLAM fusing proprioception for a humanoid robot. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1419–1426

    Google Scholar 

  97. Shi J, Tomasi C (1994) Good features to track. In: 1994 proceedings of IEEE conference on computer vision and pattern recognition, pp 593–600

    Google Scholar 

  98. Shi Y, Xu K, Niessner M, Rusinkiewicz S, Funkhouser T (2018) PlaneMatch: patch coplanarity prediction for robust RGB-D reconstruction. arXiv:1803.08407

  99. Shotton J, Glocker B, Zach C, Izadi S, Criminisi A, Fitzgibbon A (2013) Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2930–2937

    Google Scholar 

  100. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: Proceedings of the ninth IEEE international conference on computer vision. IEEE, p 1470

    Google Scholar 

  101. Solà J, Deray J, Atchuthan D (2018) A micro lie theory for state estimation in robotics. arXiv:1812.01537

  102. Steinbrucker F, Kerl C, Cremers D, Sturm J (2013) Large-Scale multi-resolution surface reconstruction from RGB-D sequences. In: 2013 IEEE international conference on computer vision, pp 3264–3271

    Google Scholar 

  103. Steinbrücker F, Sturm J, Cremers D (2011) Real-time visual odometry from dense RGB-D images. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, pp 719–722

    Google Scholar 

  104. Strasdat H (2012) Local accuracy and global consistency for efficient visual SLAM. PhD thesis, Department of Computing, Imperial College London

    Google Scholar 

  105. Strasdat H, Montiel J, Davison AJ (2010) Scale drift-aware large scale monocular SLAM. Robot Sci Syst VI 2(3):7

    Google Scholar 

  106. Stückler J, Waldvogel B, Schulz H, Behnke S (2015) Dense real-time mapping of object-class semantics from RGB-D video. J Real-Time Image Process 10(4):599–609

    Article  Google Scholar 

  107. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A Benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the international conference on intelligent robot systems (IROS)

    Google Scholar 

  108. Sünderhauf N, Pham TT, Latif Y, Milford M, Reid I (2017) Meaningful maps with object-oriented semantic mapping. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 5079–5085

    Google Scholar 

  109. Taguchi Y, Jian Y, Ramalingam S, Feng C (2013) Point-Plane SLAM for hand-held 3D sensors. In: 2013 IEEE international conference on robotics and automation, pp 5182–5189

    Google Scholar 

  110. Tateno K, Tombari F, Laina I, Navab N (2017) CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: IEEE computer society conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  111. Tateno K, Tombari F, Navab N (2015) Real-time and scalable incremental segmentation on dense SLAM. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4465–4472

    Google Scholar 

  112. Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW (1999) Bundle adjustment—a modern synthesis. In: International workshop on vision algorithms. Springer, pp 298–372

    Google Scholar 

  113. Valentin J, Nießner M, Shotton J, Fitzgibbon A, Izadi S, Torr PH (2015) Exploiting uncertainty in regression forests for accurate camera relocalization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4400–4408

    Google Scholar 

  114. Wang X, Dong W, Zhou M, Li R, Zha H (2016) Edge enhanced direct visual odometry. In: Proceedings of the british machine vision conference (BMVC), pp 35.1–35.11

    Google Scholar 

  115. Wang Y, Zhang Q, Zhou Y (2014) RGB-D mapping for indoor environment. In: 2014 9th IEEE conference on industrial electronics and applications, pp 1888–1892

    Google Scholar 

  116. Whelan T, Johannsson H, Kaess M, Leonard JJ, McDonald J (2013) Robust real-time visual odometry for dense RGB-D mapping. In: 2013 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5724–5731

    Google Scholar 

  117. Whelan T, Kaess M, Johannsson H, Fallon M, Leonard JJ, McDonald J (2015) Real-Time large-scale dense RGB-D SLAM with volumetric fusion. Int J Robot Res 34(4–5):598–626

    Article  Google Scholar 

  118. Whelan T, Leutenegger S, Salas-Moreno RF, Glocker B, Davison AJ (2015) ElasticFusion: dense SLAM without a pose graph. In: Robotics: science and systems (RSS)

    Google Scholar 

  119. Whelan T, Salas-Moreno RF, Glocker B, Davison AJ, Leutenegger S (2016) ElasticFusion: real-time dense SLAM and light source estimation. Int J Robot Res 35(14):1697–1716

    Article  Google Scholar 

  120. Yokozuka M, Oishi S, Thompson S, Banno A (2019) VITAMIN-E: visual tracking and MappINg with extremely dense feature points. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9641–9650

    Google Scholar 

  121. Zhang Z (1997) Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis Comput 15:59–76

    Article  Google Scholar 

  122. Zhou H, Ummenhofer B, Brox T (2018) DeepTAM: deep tracking and mapping. In: Proceedings of the European conference on computer vision (ECCV), pp 822–838

    Chapter  Google Scholar 

  123. Zhou QY, Koltun V (2014) Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans Graph (TOG) 33(4):155

    Google Scholar 

  124. Zhou Y, Li H, Kneip L (2019) Canny-VO: visual odometry with RGB-D cameras based on geometric 3-D-2-D edge alignment. IEEE Trans Robot 35(1):184–199

    Article  Google Scholar 

  125. Zollhöfer M, Stotko P, Görlitz A, Theobalt C, Nießner M, Klein R, Kolb A (2018) State of the art on 3D reconstruction with RGB-D cameras. In: Computer graphics forum, vol 37. Wiley Online Library, pp 625–652

    Google Scholar 

  126. Zubizarreta J, Aguinaga I, Montiel J (2019) Direct sparse mapping. arXiv:1904.06577

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Civera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Civera, J., Lee, S.H. (2019). RGB-D Odometry and SLAM. In: Rosin, P., Lai, YK., Shao, L., Liu, Y. (eds) RGB-D Image Analysis and Processing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-28603-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28603-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28602-6

  • Online ISBN: 978-3-030-28603-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics